scispace - formally typeset
Search or ask a question
Institution

University of Macau

EducationMacao, Macau, China
About: University of Macau is a education organization based out in Macao, Macau, China. It is known for research contribution in the topics: Population & Control theory. The organization has 6636 authors who have published 18324 publications receiving 327384 citations. The organization is also known as: UM & UMAC.


Papers
More filters
Journal ArticleDOI
TL;DR: This work analyzes the wireless signal propagation model considering human activities influence and proposes a novel and truly unobtrusive detection method based on the advanced wireless technologies, which it is called as WiFall, which withdraws the need for hardware modification, environmental setup and worn or taken devices.
Abstract: Injuries that are caused by falls have been regarded as one of the major health threats to the independent living for the elderly. Conventional fall detection systems have various limitations. In this work, we first look for the correlations between different radio signal variations and activities by analyzing radio propagation model. Based on our observation, we propose WiFall, a truly unobtrusive fall detection system. WiFall employs physical layer Channel State Information (CSI) as the indicator of activities. It can detect fall of the human without hardware modification, extra environmental setup, or any wearable device. We implement WiFall on desktops equipped with commodity 802.11n NIC, and evaluate the performance in three typical indoor scenarios with several layouts of transmitter-receiver (Tx-Rx) links. In our area of interest, WiFall can achieve fall detection for a single person with high accuracy. As demonstrated by the experimental results, WiFall yields 90 percent detection precision with a false alarm rate of 15 percent on average using a one-class SVM classifier in all testing scenarios. It can also achieve average 94 percent fall detection precisions with 13 percent false alarm using Random Forest algorithm.

686 citations

Journal ArticleDOI
TL;DR: In this article, the current progress on carbon based pseudo-material composites for supercapacitor application in a well-systematic and easy manner which can guide the early researchers and emerging scientists dealing with or interested in supercapACitor.

640 citations

Journal ArticleDOI
Yang Yang1, Shahidul Islam1, Jin Wang1, Yuan Li1, Xin Chen1 
TL;DR: Clinical evidence showing the beneficial effect of TCM in the treatment of patients with SARS coronaviral infections are discussed and experiment studies that provide an insight into the mechanism underlying the therapeutic effect ofTCM are introduced.
Abstract: Currently, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2, formerly known as 2019-nCoV, the causative pathogen of Coronavirus Disease 2019 (COVID-19)) has rapidly spread across China and around the world, causing an outbreak of acute infectious pneumonia. No specific anti-virus drugs or vaccines are available for the treatment of this sudden and lethal disease. The supportive care and non-specific treatment to ameliorate the symptoms of the patient are the only options currently. At the top of these conventional therapies, greater than 85% of SARS-CoV-2 infected patients in China are receiving Traditional Chinese Medicine (TCM) treatment. In this article, relevant published literatures are thoroughly reviewed and current applications of TCM in the treatment of COVID-19 patients are analyzed. Due to the homology in epidemiology, genomics, and pathogenesis of the SARS-CoV-2 and SARS-CoV, and the widely use of TCM in the treatment of SARS-CoV, the clinical evidence showing the beneficial effect of TCM in the treatment of patients with SARS coronaviral infections are discussed. Current experiment studies that provide an insight into the mechanism underlying the therapeutic effect of TCM, and those studies identified novel naturally occurring compounds with anti-coronaviral activity are also introduced.

638 citations

Journal ArticleDOI
Ye Yi1, Philip N.P. Lagniton1, Sen Ye1, Enqin Li1, Ren-He Xu1 
TL;DR: This article attempts to provide a timely and comprehensive review of the swiftly developing research subject and will cover the basics about the epidemiology, etiology, virology, diagnosis, treatment, prognosis, and prevention of the disease.
Abstract: The outbreak of Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2), has thus far killed over 3,000 people and infected over 80,000 in China and elsewhere in the world, resulting in catastrophe for humans. Similar to its homologous virus, SARS-CoV, which caused SARS in thousands of people in 2003, SARS-CoV-2 might also be transmitted from the bats and causes similar symptoms through a similar mechanism. However, COVID-19 has lower severity and mortality than SARS but is much more transmissive and affects more elderly individuals than youth and more men than women. In response to the rapidly increasing number of publications on the emerging disease, this article attempts to provide a timely and comprehensive review of the swiftly developing research subject. We will cover the basics about the epidemiology, etiology, virology, diagnosis, treatment, prognosis, and prevention of the disease. Although many questions still require answers, we hope that this review helps in the understanding and eradication of the threatening disease.

609 citations

Journal ArticleDOI
TL;DR: The scheme achieves high-speed and low-power operation thanks to the reference-free technique that avoids the static power dissipation of an on-chip reference generator and the use of a common-mode based charge recovery switching method reduces the switching energy and improves the conversion linearity.
Abstract: A 1.2 V 10-bit 100 MS/s Successive Approximation (SA) ADC is presented. The scheme achieves high-speed and low-power operation thanks to the reference-free technique that avoids the static power dissipation of an on-chip reference generator. Moreover, the use of a common-mode based charge recovery switching method reduces the switching energy and improves the conversion linearity. A variable self-timed loop optimizes the reset time of the preamplifier to improve the conversion speed. Measurement results on a 90 nm CMOS prototype operated at 1.2 V supply show 3 mW total power consumption with a peak SNDR of 56.6 dB and a FOM of 77 fJ/conv-step.

587 citations


Authors

Showing all 6766 results

NameH-indexPapersCitations
Henry T. Lynch13392586270
Chu-Xia Deng12544457000
H. Vincent Poor109211667723
Peng Chen10391843415
George F. Gao10279382219
MengChu Zhou96112436969
Gang Li9348668181
Rob Law8171431002
Zongjin Li8063022103
Han-Ming Shen8023727410
Heng Li7974523385
Lionel M. Ni7546628770
C. L. Philip Chen7448220223
Chun-Su Yuan7239721089
Joao P. Hespanha7241839004
Network Information
Related Institutions (5)
Nanyang Technological University
112.8K papers, 3.2M citations

94% related

National University of Singapore
165.4K papers, 5.4M citations

93% related

University of Hong Kong
99.1K papers, 3.2M citations

93% related

Zhejiang University
183.2K papers, 3.4M citations

91% related

The Chinese University of Hong Kong
93.6K papers, 3M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202345
2022307
20212,579
20202,357
20192,075
20181,714