scispace - formally typeset
Search or ask a question
Institution

University of Macau

EducationMacao, Macau, China
About: University of Macau is a education organization based out in Macao, Macau, China. It is known for research contribution in the topics: Computer science & Population. The organization has 6636 authors who have published 18324 publications receiving 327384 citations. The organization is also known as: UM & UMAC.


Papers
More filters
Journal ArticleDOI
TL;DR: Depression is common among ED nurses during the COVID-19 pandemic in China and considering the negative impact of depression on quality of patient care and nurses’ quality of life, a heightened awareness and early treatment of depression for frontline ED nurses should be provided.

170 citations

Journal ArticleDOI
TL;DR: This work reveals that the family of halide perovskite colloidal nanocrystals transcend these constraints with highly efficient five-photon-excited upconversion fluorescence—unprecedented for semiconductor nanocry crystals.
Abstract: Multiphoton absorption processes enable many technologically important applications, such as in vivo imaging, photodynamic therapy and optical limiting, and so on. Specifically, higher-order nonlinear absorption such as five-photon absorption offers significant advantages of greater spatial confinement, increased penetration depth, reduced autofluorescence, enhanced sensitivity and improved resolution over lower orders in bioimaging. Organic chromophores and conventional semiconductor nanocrystals are leaders in two-/three-photon absorption applications, but face considerable challenges from their small five-photon action cross-sections. Herein, we reveal that the family of halide perovskite colloidal nanocrystals transcend these constraints with highly efficient five-photon-excited upconversion fluorescence-unprecedented for semiconductor nanocrystals. Amazingly, their multidimensional type I (both conduction and valence band edges of core lie within bandgap of shell) core-shell (three-dimensional methylammonium lead bromide/two-dimensional octylammonium lead bromide) perovskite nanocrystals exhibit five-photon action cross-sections that are at least 9 orders larger than state-of-the-art specially designed organic molecules. Importantly, this family of halide perovskite nanocrystals may enable fresh approaches for next-generation multiphoton imaging applications.

170 citations

Journal ArticleDOI
TL;DR: This review summarizes the key advancements in nature product-centered cancer research and calls for the implementation of systematic approaches, new pharmacological models, and exploration of emerging directions to revitalize natural products search in cancer therapy.
Abstract: Natural products, with remarkable chemical diversity, have been extensively investigated for their anticancer potential for more than a half-century. The collective efforts of the community have achieved the tremendous advancements, bringing natural products to clinical use and discovering new therapeutic opportunities, yet the challenges remain ahead. With remarkable changes in the landscape of cancer therapy and growing role of cutting-edge technologies, we may have come to a crossroads to revisit the strategies to understand nature products and to explore their therapeutic utility. This review summarizes the key advancements in nature product-centered cancer research and calls for the implementation of systematic approaches, new pharmacological models, and exploration of emerging directions to revitalize natural products search in cancer therapy.

168 citations

Journal ArticleDOI
TL;DR: This work develops a simple yet general method with which to fabricate DNA-based NCPs and presents an interesting concept of a nanoscale drug-delivery system that could achieve the intranuclear delivery of photosensitizers, the down-regulation of anti-apoptotic proteins, and the modulation of the unfavorable tumor microenvironment simultaneously for improved cancer therapy.
Abstract: Photodynamic therapy (PDT) is a light-triggered therapy used to kill cancer cells by producing reactive oxygen species (ROS). Herein, a new kind of DNA nanostructure based on the coordination between calcium ions (Ca2+) and AS1411 DNA G quadruplexes to form nanoscale coordination polymers (NCPs) is developed via a simple method. Both chlorine e6 (Ce6), a photosensitizer, and hemin, an iron-containing porphyrin, can be inserted into the G-quadruplex structure in the obtained NCPs. With further polyethylene glycol (PEG) modification, we obtain Ca-AS1411/Ce6/hemin@pHis-PEG (CACH-PEG) NCP nanostructure that enables the intranuclear transport of photosensitizer Ce6 to generate ROS inside cell nuclei that are the most vulnerable to ROS. Meanwhile, the inhibition of antiapoptotic protein B-cell lymphoma 2 (Bcl-2) expression by AS1411 allows for greatly improved PDT-induced cell apoptosis. Furthermore, the catalase-mimicking DNAzyme function of G-quadruplexes and hemin in those NCPs could decompose tumor endogeno...

168 citations

Journal ArticleDOI
01 Jan 2020
TL;DR: In this paper, a PDMS-in-water emulsion approach is adopted to design a mechanochemically robust super-hydrophobic cotton fabric with intelligent self-healing nature, without using any fluorine-containing components.
Abstract: It is highly challenging to construct a durable superhydrophobic coating for practical applications since the coating is easily destroyed by mechano-chemical attack. To address this issue, a “PDMS-in-water” emulsion approach is for the first time adopted to design a mechanochemically robust superhydrophobic cotton fabric with intelligent self-healing nature, without using any fluorine-containing components. With this approach, PDMS molecules firstly penetrate into the cotton fiber, and then graft onto the surface of the cotton fabric with a strong binding force, creating hierarchical rough structures and lowering the surface energy simultaneously. Benefitting from this design, the PDMS@cotton fabric exhibits high superhydrophobicity with a water contact angle over 155°, surpassing all the PDMS-in-organic solvent based approaches. Impressively, the surface repairs its superhydrophobicity throughout the whole lifetime though damaged by machine washing or abrasion (>100 cycles), due to the self-diffusion process of PDMS molecules from the inner part to the outer surface of the cotton fibers to minimize surface free energy. Besides, the superhydrophobic coatings display superior chemical stability in strongly acidic and alkaline solution, and maintain similar textile physical properties of the cotton fabric, such as elongation at break, tensile strength, etc. Our environment-friendly “PDMS-in-water” approach can be easily integrated into industrial textile finishing treatment and is promising to apply to various substrates with robust superhydrophobic surfaces.

168 citations


Authors

Showing all 6766 results

NameH-indexPapersCitations
Henry T. Lynch13392586270
Chu-Xia Deng12544457000
H. Vincent Poor109211667723
Peng Chen10391843415
George F. Gao10279382219
MengChu Zhou96112436969
Gang Li9348668181
Rob Law8171431002
Zongjin Li8063022103
Han-Ming Shen8023727410
Heng Li7974523385
Lionel M. Ni7546628770
C. L. Philip Chen7448220223
Chun-Su Yuan7239721089
Joao P. Hespanha7241839004
Network Information
Related Institutions (5)
Nanyang Technological University
112.8K papers, 3.2M citations

94% related

National University of Singapore
165.4K papers, 5.4M citations

93% related

University of Hong Kong
99.1K papers, 3.2M citations

93% related

Zhejiang University
183.2K papers, 3.4M citations

91% related

The Chinese University of Hong Kong
93.6K papers, 3M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202345
2022307
20212,579
20202,357
20192,075
20181,714