scispace - formally typeset
Search or ask a question
Institution

University of Macau

EducationMacao, Macau, China
About: University of Macau is a education organization based out in Macao, Macau, China. It is known for research contribution in the topics: Computer science & Population. The organization has 6636 authors who have published 18324 publications receiving 327384 citations. The organization is also known as: UM & UMAC.


Papers
More filters
Journal ArticleDOI
TL;DR: Chen et al. show that by fine tuning the alkaline environment in precursor solution, they can greatly suppress defects density and obtain high certified efficiency of 20.87% in the planar heterojunction perovskite solar cell.
Abstract: Further minimizing the defect state density in the semiconducting absorber is vital to boost the power conversion efficiency of solar cells approaching Shockley-Queisser limit. However, it lacks a general strategy to control the precursor chemistry for defects density reduction in the family of iodine based perovskite. Here the alkaline environment in precursor solution is carefully investigated as an effective parameter to suppress the incident iodine and affects the crystallization kinetics during film fabrication, via rationale adjustment of the alkalinity of additives. Especially, a ‘residual free’ weak alkaline is proposed not only to shrink the bandgap of the absorber by modulating the stoichiometry of organic cation, but also to improve the open circuit voltage in the resultant device. Consequently, the certified efficiency of 20.87% (Newport) is achieved with one of the smallest voltage deficits of 413 mV in the planar heterojunction perovskite solar cell.

161 citations

Journal ArticleDOI
TL;DR: The comparison results show that S-Boxes designed by applying ICOs have a higher security and better performance compared with other schemes and can be used to other practice problems in a similar way.
Abstract: This paper is to design substitution boxes (S-Boxes) using innovative I-Ching operators (ICOs) that have evolved from ancient Chinese I-Ching philosophy. These three operators-intrication, turnover, and mutual- inherited from I-Ching are specifically designed to generate S-Boxes in cryptography. In order to analyze these three operators, identity, compositionality, and periodicity measures are developed. All three operators are only applied to change the output positions of Boolean functions. Therefore, the bijection property of S-Box is satisfied automatically. It means that our approach can avoid singular values, which is very important to generate S-Boxes. Based on the periodicity property of the ICOs, a new network is constructed, thus to be applied in the algorithm for designing S-Boxes. To examine the efficiency of our proposed approach, some commonly used criteria are adopted, such as nonlinearity, strict avalanche criterion, differential approximation probability, and linear approximation probability. The comparison results show that S-Boxes designed by applying ICOs have a higher security and better performance compared with other schemes. Furthermore, the proposed approach can also be used to other practice problems in a similar way.

161 citations

Journal ArticleDOI
TL;DR: The authors found that lower depression severity predicted increased smartphone use over the week and greater use of expressive suppression as an emotion regulation strategy predicted more baseline smartphone use, but less smartphone use during the week.

161 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined the effects of consumer-based brand equity components (i.e., brand loyalty, brand awareness, perceived quality, and brand image) of luxury hotel brands on consumer brand attitude and purchase intention with brand performance as a contextual factor.

161 citations

Journal ArticleDOI
TL;DR: This paper proposes novel container migration algorithms and architecture to support mobility tasks with various application requirements and demonstrates that the strategy outperforms the existing baseline approaches in terms of delay, power consumption, and migration cost.
Abstract: Fog Computing (FC) is a flexible architecture to support distributed domain-specific applications with cloud-like quality of service. However, current FC still lacks the mobility support mechanism when facing many mobile users with diversified application quality requirements. Such mobility support mechanism can be critical such as in the industrial internet where human, products, and devices are moveable. To fill in such gaps, in this paper we propose novel container migration algorithms and architecture to support mobility tasks with various application requirements. Our algorithms are realized from three aspects: 1) We consider mobile application tasks can be hosted in a container of a corresponding fog node that can be migrated, taking the communication delay and computational power consumption into consideration; 2) We further model such container migration strategy as multiple dimensional Markov Decision Process (MDP) spaces. To effectively reduce the large MDP spaces, efficient deep reinforcement learning algorithms are devised to achieve fast decision-making and 3) We implement the model and algorithms as a container migration prototype system and test its feasibility and performance. Extensive experiments show that our strategy outperforms the existing baseline approaches 2.9, 48.5 and 58.4 percent on average in terms of delay, power consumption, and migration cost, respectively.

161 citations


Authors

Showing all 6766 results

NameH-indexPapersCitations
Henry T. Lynch13392586270
Chu-Xia Deng12544457000
H. Vincent Poor109211667723
Peng Chen10391843415
George F. Gao10279382219
MengChu Zhou96112436969
Gang Li9348668181
Rob Law8171431002
Zongjin Li8063022103
Han-Ming Shen8023727410
Heng Li7974523385
Lionel M. Ni7546628770
C. L. Philip Chen7448220223
Chun-Su Yuan7239721089
Joao P. Hespanha7241839004
Network Information
Related Institutions (5)
Nanyang Technological University
112.8K papers, 3.2M citations

94% related

National University of Singapore
165.4K papers, 5.4M citations

93% related

University of Hong Kong
99.1K papers, 3.2M citations

93% related

Zhejiang University
183.2K papers, 3.4M citations

91% related

The Chinese University of Hong Kong
93.6K papers, 3M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202345
2022307
20212,579
20202,357
20192,075
20181,714