scispace - formally typeset
Search or ask a question
Institution

University of Maine

EducationOrono, Maine, United States
About: University of Maine is a education organization based out in Orono, Maine, United States. It is known for research contribution in the topics: Population & Ice sheet. The organization has 8637 authors who have published 16932 publications receiving 590124 citations. The organization is also known as: University of Maine at Orono.


Papers
More filters
Journal ArticleDOI
TL;DR: The analysis supports theory claiming that calls to increase the number of students receiving STEM degrees could be answered, at least in part, by abandoning traditional lecturing in favor of active learning and supports active learning as the preferred, empirically validated teaching practice in regular classrooms.
Abstract: creased by 0.47 SDs under active learning (n = 158 studies), and that the odds ratio for failing was 1.95 under traditional lecturing (n = 67 studies). These results indicate that average examination scores improved by about 6% in active learning sections, and that students in classes with traditional lecturing were 1.5 times more likely to fail than were students in classes with active learning. Heterogeneity analyses indicated that both results hold across the STEM disciplines, that active learning increases scores on concept inventories more than on course examinations, and that active learning appears effective across all class sizes—although the greatest effects are in small (n ≤ 50) classes. Trim and fill analyses and fail-safe n calculations suggest that the results are not due to publication bias. The results also appear robust to variation in the methodological rigor of the included studies, based on the quality of controls over student quality and instructor identity. This is the largest and most comprehensive metaanalysis of undergraduate STEM education published to date. The results raise questions about the continued use of traditional lecturing as a control in research studies, and support active learning as the preferred, empirically validated teaching practice in regular classrooms.

5,474 citations

Journal ArticleDOI
27 Jul 2001-Science
TL;DR: Paleoecological, archaeological, and historical data show that time lags of decades to centuries occurred between the onset of overfishing and consequent changes in ecological communities, because unfished species of similar trophic level assumed the ecological roles of over-fished species until they too were overfished or died of epidemic diseases related to overcrowding as mentioned in this paper.
Abstract: Ecological extinction caused by overfishing precedes all other pervasive human disturbance to coastal ecosystems, including pollution, degradation of water quality, and anthropogenic climate change. Historical abundances of large consumer species were fantastically large in comparison with recent observations. Paleoecological, archaeological, and historical data show that time lags of decades to centuries occurred between the onset of overfishing and consequent changes in ecological communities, because unfished species of similar trophic level assumed the ecological roles of overfished species until they too were overfished or died of epidemic diseases related to overcrowding. Retrospective data not only help to clarify underlying causes and rates of ecological change, but they also demonstrate achievable goals for restoration and management of coastal ecosystems that could not even be contemplated based on the limited perspective of recent observations alone.

5,411 citations

Journal ArticleDOI
15 Feb 2008-Science
TL;DR: This article developed an ecosystem-specific, multiscale spatial model to synthesize 17 global data sets of anthropogenic drivers of ecological change for 20 marine ecosystems and found that no area is unaffected by human influence and that a large fraction (41%) is strongly affected by multiple drivers.
Abstract: The management and conservation of the world's oceans require synthesis of spatial data on the distribution and intensity of human activities and the overlap of their impacts on marine ecosystems. We developed an ecosystem-specific, multiscale spatial model to synthesize 17 global data sets of anthropogenic drivers of ecological change for 20 marine ecosystems. Our analysis indicates that no area is unaffected by human influence and that a large fraction (41%) is strongly affected by multiple drivers. However, large areas of relatively little human impact remain, particularly near the poles. The analytical process and resulting maps provide flexible tools for regional and global efforts to allocate conservation resources; to implement ecosystem-based management; and to inform marine spatial planning, education, and basic research.

5,365 citations

Journal ArticleDOI
TL;DR: A new method for fluorescence imaging has been developed that can obtain spatial distributions of large numbers of fluorescent molecules on length scales shorter than the classical diffraction limit, and suggests a means to address a significant number of biological questions that had previously been limited by microscope resolution.

3,437 citations

Journal ArticleDOI
08 Nov 2001-Nature
TL;DR: Observations suggest that carbon nanotubes, with their rigid nonpolar structures, might be exploited as unique molecular channels for water and protons, with the channel occupancy and conductivity tunable by changes in the local channel polarity and solvent conditions.
Abstract: Confinement of matter on the nanometre scale can induce phase transitions not seen in bulk systems1. In the case of water, so-called drying transitions occur on this scale2,3,4,5 as a result of strong hydrogen-bonding between water molecules, which can cause the liquid to recede from nonpolar surfaces to form a vapour layer separating the bulk phase from the surface6. Here we report molecular dynamics simulations showing spontaneous and continuous filling of a nonpolar carbon nanotube with a one-dimensionally ordered chain of water molecules. Although the molecules forming the chain are in chemical and thermal equilibrium with the surrounding bath, we observe pulse-like transmission of water through the nanotube. These transmission bursts result from the tight hydrogen-bonding network inside the tube, which ensures that density fluctuations in the surrounding bath lead to concerted and rapid motion along the tube axis7,8,9. We also find that a minute reduction in the attraction between the tube wall and water dramatically affects pore hydration, leading to sharp, two-state transitions between empty and filled states on a nanosecond timescale. These observations suggest that carbon nanotubes, with their rigid nonpolar structures10,11, might be exploited as unique molecular channels for water and protons, with the channel occupancy and conductivity tunable by changes in the local channel polarity and solvent conditions.

3,115 citations


Authors

Showing all 8729 results

NameH-indexPapersCitations
Clifford J. Rosen11165547881
Juan S. Bonifacino10830346554
John D. Aber10720448500
Surendra P. Shah9971032832
Charles T. Driscoll9755437355
Samuel Madden9538846424
Lihua Xiao9349532721
Patrick G. Hatcher9140127519
Pedro J. J. Alvarez8937834837
George R. Pettit8984831759
James R. Wilson89127137470
Steven Girvin8636638963
Peter Marler8117422070
Garry R. Buettner8030429273
Paul Andrew Mayewski8042029356
Network Information
Related Institutions (5)
Texas A&M University
164.3K papers, 5.7M citations

92% related

Pennsylvania State University
196.8K papers, 8.3M citations

91% related

Michigan State University
137K papers, 5.6M citations

91% related

University of Maryland, College Park
155.9K papers, 7.2M citations

91% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202332
2022134
2021834
2020756
2019738
2018725