scispace - formally typeset
Search or ask a question

Showing papers by "University of Maine published in 2014"


Journal ArticleDOI
TL;DR: The analysis supports theory claiming that calls to increase the number of students receiving STEM degrees could be answered, at least in part, by abandoning traditional lecturing in favor of active learning and supports active learning as the preferred, empirically validated teaching practice in regular classrooms.
Abstract: creased by 0.47 SDs under active learning (n = 158 studies), and that the odds ratio for failing was 1.95 under traditional lecturing (n = 67 studies). These results indicate that average examination scores improved by about 6% in active learning sections, and that students in classes with traditional lecturing were 1.5 times more likely to fail than were students in classes with active learning. Heterogeneity analyses indicated that both results hold across the STEM disciplines, that active learning increases scores on concept inventories more than on course examinations, and that active learning appears effective across all class sizes—although the greatest effects are in small (n ≤ 50) classes. Trim and fill analyses and fail-safe n calculations suggest that the results are not due to publication bias. The results also appear robust to variation in the methodological rigor of the included studies, based on the quality of controls over student quality and instructor identity. This is the largest and most comprehensive metaanalysis of undergraduate STEM education published to date. The results raise questions about the continued use of traditional lecturing as a control in research studies, and support active learning as the preferred, empirically validated teaching practice in regular classrooms.

5,474 citations


Journal ArticleDOI
18 Apr 2014-Science
TL;DR: This work analyzes 100 time series from biomes across Earth to ask how diversity within assemblages is changing through time and detects systematic loss of α diversity, but community composition changed systematically through time, in excess of predictions from null models.
Abstract: The extent to which biodiversity change in local assemblages contributes to global biodiversity loss is poorly understood. We analyzed 100 time series from biomes across Earth to ask how diversity within assemblages is changing through time. We quantified patterns of temporal α diversity, measured as change in local diversity, and temporal β diversity, measured as change in community composition. Contrary to our expectations, we did not detect systematic loss of α diversity. However, community composition changed systematically through time, in excess of predictions from null models. Heterogeneous rates of environmental change, species range shifts associated with climate change, and biotic homogenization may explain the different patterns of temporal α and β diversity. Monitoring and understanding change in species composition should be a conservation priority.

990 citations


Journal ArticleDOI
TL;DR: This work couple fine-grained climate projections to thermal performance data from 38 ectothermic invertebrate species and contrast projections with those of a simple model to show that projections based on mean temperature change alone differ substantially from those incorporating changes to the variation, and to the mean and variation in concert.
Abstract: Increases in the frequency, severity and duration of temperature extremes are anticipated in the near future. Although recent work suggests that changes in temperature variation will have disproportionately greater effects on species than changes to the mean, much of climate change research in ecology has focused on the impacts of mean temperature change. Here, we couple fine-grained climate projections (2050–2059) to thermal performance data from 38 ectothermic invertebrate species and contrast projections with those of a simple model. We show that projections based on mean temperature change alone differ substantially from those incorporating changes to the variation, and to the mean and variation in concert. Although most species show increases in performance at greater mean temperatures, the effect of mean and variance change together yields a range of responses, with temperate species at greatest risk of performance declines. Our work highlights the importance of using fine-grained temporal data to incorporate the full extent of temperature variation when assessing and projecting performance.

714 citations


Journal ArticleDOI
TL;DR: In this article, a reassessment of the temporal and spatial distribution of glacier change is presented, which supports recent model projections that surface mass balance, rather than ice dynamics, will dominate the ice sheet contribution to 21st century sea level rise.
Abstract: Extensive ice thickness surveys by NASA’s Operation IceBridge enable over a decade of ice discharge measurements at high precision for the majority of Greenland’s marine-terminating outlet glaciers, prompting a reassessment of the temporal and spatial distribution of glacier change. Annualmeasurements for 178 outlet glaciers reveal that, despite widespread acceleration, only 15 glaciers accounted for 77% of the 739 ± 29 Gt of ice lost due to acceleration since 2000 and four accounted for ~50%. Among the top sources of loss are several glaciers that have received little scientific attention. The relative contribution of ice discharge to total loss decreased from 58% before 2005 to 32% between 2009 and 2012. As such, 84% of the increase in mass loss after 2009 was due to increased surface runoff. These observations support recentmodel projections that surface mass balance, rather than ice dynamics, will dominate the ice sheet’s contribution to 21st century sea level rise.

526 citations


Journal ArticleDOI
TL;DR: An integrated understanding of the advantages and drawbacks of the many MST methods targeting human sources advanced over the past several decades will benefit managers, regulators, researchers, and other users of this rapidly growing area of environmental microbiology.
Abstract: Microbial source tracking (MST) describes a suite of methods and an investigative strategy for determination of fecal pollution sources in environmental waters that rely on the association of certain fecal microorganisms with a particular host. MST is used to assess recreational water quality and associated human health risk, and total maximum daily load allocations. Many methods rely on signature molecules (markers) such as DNA sequences of host-associated microorganisms. Human sewage pollution is among the greatest concerns for human health due to (1) the known risk of exposure to human waste and (2) the public and regulatory will to reduce sewage pollution; however, methods to identify animal sources are receiving increasing attention as our understanding of zoonotic disease potential improves. Here, we review the performance of MST methods in initial reports and field studies, with particular emphasis on quantitative PCR (qPCR). Relationships among human-associated MST markers, fecal indicator bacteria, pathogens, and human health outcomes are presented along with recommendations for future research. An integrated understanding of the advantages and drawbacks of the many MST methods targeting human sources advanced over the past several decades will benefit managers, regulators, researchers, and other users of this rapidly growing area of environmental microbiology.

521 citations


Journal ArticleDOI
TL;DR: This work highlights the conceptual and computational issues that have prevented a more direct approach to measuring hypervolumes and presents a new multivariate kernel density estimation method that resolves many of these problems in an arbitrary number of dimensions.
Abstract: Aim The Hutchinsonian hypervolume is the conceptual foundation for many lines of ecological and evolutionary inquiry, including functional morphology, comparative biology, community ecology and niche theory. However, extant methods to sample from hypervolumes or measure their geometry perform poorly on high-dimensional or holey datasets. Innovation We first highlight the conceptual and computational issues that have prevented a more direct approach to measuring hypervolumes. Next, we present a new multivariate kernel density estimation method that resolves many of these problems in an arbitrary number of dimensions. Main conclusions We show that our method (implemented as the ‘hypervolume’ R package) can match several extant methods for hypervolume geometry and species distribution modelling. Tools to quantify high-dimensional ecological hypervolumes will enable a wide range of fundamental descriptive, inferential and comparative questions to be addressed.

484 citations


Journal ArticleDOI
TL;DR: A lucid synthesis of the developments on single-molecule localization precision and accuracy and their practical implications are presented in order to guide the increasing number of researchers using single-particle tracking and super-resolution localization microscopy.
Abstract: Methods based on single-molecule localization and photophysics have brought nanoscale imaging with visible light into reach. This has enabled single-particle tracking applications for studying the dynamics of molecules and nanoparticles and contributed to the recent revolution in super-resolution localization microscopy techniques. Crucial to the optimization of such methods are the precision and accuracy with which single fluorophores and nanoparticles can be localized. We present a lucid synthesis of the developments on this localization precision and accuracy and their practical implications in order to guide the increasing number of researchers using single-particle tracking and super-resolution localization microscopy.

447 citations


Journal ArticleDOI
TL;DR: Four main aspects of the miRNA:mRNA target interaction emerge as common features on which most target prediction is based: seed match, conservation, free energy, and site accessibility, and this review explains these features and identifies how they are incorporated into currently available target prediction tools.
Abstract: The human genome encodes for over 1800 microRNAs, which are short noncoding RNA molecules that function to regulate gene expression post-transcriptionally. Due to the potential for one microRNA to target multiple gene transcripts, microRNAs are recognized as a major mechanism to regulate gene expression and mRNA translation. Computational prediction of microRNA targets is a critical initial step in identifying microRNA:mRNA target interactions for experimental validation. The available tools for microRNA target prediction encompass a range of different computational approaches, from the modeling of physical interactions to the incorporation of machine learning. This review provides an overview of the major computational approaches to microRNA target prediction. Our discussion highlights three tools for their ease of use, reliance on relatively updated versions of miRBase, and range of capabilities, and these are DIANA-microT-CDS, miRanda-mirSVR, and TargetScan. In comparison across all microRNA target prediction tools, four main aspects of the microRNA:mRNA target interaction emerge as common features on which most target prediction is based: seed match, conservation, free energy, and site accessibility. This review explains these features and identifies how they are incorporated into currently available target prediction tools. MicroRNA target prediction is a dynamic field with increasing attention on development of new analysis tools. This review attempts to provide a comprehensive assessment of these tools in a manner that is accessible across disciplines. Understanding the basis of these prediction methodologies will aid in user selection of the appropriate tools and interpretation of the tool output.

390 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present an update of the "key points" from the Antarctic Climate Change and the Environment (ACCE) report that was published by the Scientific Committee on Antarctic Research (SCAR) in 2009.
Abstract: We present an update of the ‘key points’ from the Antarctic Climate Change and the Environment (ACCE) report that was published by the Scientific Committee on Antarctic Research (SCAR) in 2009. We summarise subsequent advances in knowledge concerning how the climates of the Antarctic and Southern Ocean have changed in the past, how they might change in the future, and examine the associated impacts on the marine and terrestrial biota. We also incorporate relevant material presented by SCAR to the Antarctic Treaty Consultative Meetings, and make use of emerging results that will form part of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report

377 citations


Journal ArticleDOI
TL;DR: Forage fish play a pivotal role in marine ecosystems and economies worldwide by sustaining many predators and fisheries directly and indirectly as discussed by the authors, and they contribute a total of about $16.9 billion USD to global fisheries values annually.
Abstract: Forage fish play a pivotal role in marine ecosystems and economies worldwide by sustaining many predators and fisheries directly and indirectly. We estimate global forage fish contributions to marine ecosystems through a synthesis of 72 published Ecopath models from around the world. Three distinct contributions of forage fish were examined: (i) the ecological support service of forage fish to predators in marine ecosystems, (ii) the total catch and value of forage fisheries and (iii) the support service of forage fish to the catch and value of other commercially targeted predators. Forage fish use and value varied and exhibited patterns across latitudes and ecosystem types. Forage fish supported many kinds of predators, including fish, seabirds, marine mammals and squid. Overall, forage fish contribute a total of about $16.9 billion USD to global fisheries values annually, i.e. 20% of the global ex-vessel catch values of all marine fisheries combined. While the global catch value of forage fisheries was $5.6 billion, fisheries supported by forage fish were more than twice as valuable ($11.3 billion). These estimates provide important information for evaluating the trade-offs of various uses of forage fish across ecosystem types, latitudes and globally. We did not estimate a monetary value for supportive contributions of forage fish to recreational fisheries or to uses unrelated to fisheries, and thus the estimates of economic value reported herein understate the global value of forage fishes.

334 citations


Journal ArticleDOI
TL;DR: A conceptual framework for testing theories for the latitudinal gradient of species richness in terms of variation in functional diversity at the alpha, beta, and gamma scales is presented and suggests that multiple processes have shaped trait diversity in trees, reflecting no consistent support for any one theory.
Abstract: The processes causing the latitudinal gradient in species richness remain elusive. Ecological theories for the origin of biodiversity gradients, such as competitive exclusion, neutral dynamics, and environmental filtering, make predictions for how functional diversity should vary at the alpha (within local assemblages), beta (among assemblages), and gamma (regional pool) scales. We test these predictions by quantifying hypervolumes constructed from functional traits representing major axes of plant strategy variation (specific leaf area, plant height, and seed mass) in tree assemblages spanning the temperate and tropical New World. Alpha-scale trait volume decreases with absolute latitude and is often lower than sampling expectation, consistent with environmental filtering theory. Beta-scale overlap decays with geographic distance fastest in the temperate zone, again consistent with environmental filtering theory. In contrast, gamma-scale trait space shows a hump-shaped relationship with absolute latitude, consistent with no theory. Furthermore, the overall temperate trait hypervolume was larger than the overall tropical hypervolume, indicating that the temperate zone permits a wider range of trait combinations or that niche packing is stronger in the tropical zone. Although there are limitations in the data, our analyses suggest that multiple processes have shaped trait diversity in trees, reflecting no consistent support for any one theory.

Journal ArticleDOI
TL;DR: The decline in great whale numbers, estimated to be at least 66% and perhaps as high as 90%, has likely altered the structure and function of the oceans, but recovery is possible and in many cases is already underway.
Abstract: Baleen and sperm whales, known collectively as the great whales, include the largest animals in the history of life on Earth. With high metabolic demands and large populations, whales probably had a strong influence on marine ecosystems before the advent of industrial whaling: as consumers of fish and invertebrates; as prey to other large-bodied predators; as reservoirs of and vertical and horizontal vectors for nutrients; and as detrital sources of energy and habitat in the deep sea. The decline in great whale numbers, estimated to be at least 66% and perhaps as high as 90%, has likely altered the structure and function of the oceans, but recovery is possible and in many cases is already underway. Future changes in the structure and function of the world's oceans can be expected with the restoration of great whale populations.

Journal ArticleDOI
TL;DR: In this paper, the authors present a series of timeslice maps for 20 ka, 15 ka, 10 ka and 5 ka, including grounding line position and ice sheet thickness changes, along with a clear assessment of levels of confidence.

Journal ArticleDOI
TL;DR: There was a reduction in microbial richness and diversity after fracturing, with the lowest diversity at 49 days, and Thirty-one taxa dominated injected, flowback, and produced water communities, which took on distinct signatures as injected carbon and electron acceptors were attenuated within the shale.
Abstract: Microorganisms play several important roles in unconventional gas recovery, from biodegradation of hydrocarbons to souring of wells and corrosion of equipment. During and after the hydraulic fracturing process, microorganisms are subjected to harsh physicochemical conditions within the kilometer-deep hydrocarbon-bearing shale, including high pressures, elevated temperatures, exposure to chemical additives and biocides, and brine-level salinities. A portion of the injected fluid returns to the surface and may be reused in other fracturing operations, a process that can enrich for certain taxa. This study tracked microbial community dynamics using pyrotag sequencing of 16S rRNA genes in water samples from three hydraulically fractured Marcellus shale wells in Pennsylvania, USA over a 328-day period. There was a reduction in microbial richness and diversity after fracturing, with the lowest diversity at 49 days. Thirty-one taxa dominated injected, flowback, and produced water communities, which took on disti...

Journal ArticleDOI
17 Oct 2014-Science
TL;DR: The ways that a more intentional harnessing of evolution may be able to help us meet some of Earth's most pressing challenges, including disease, climate change, and food security are reviewed.
Abstract: Two categories of evolutionary challenges result from escalating human impacts on the planet. The first arises from cancers, pathogens and pests that evolve too quickly, and the second from the inability of many valued species to adapt quickly enough. Applied evolutionary biology provides a suite of strategies to address these global challenges that threaten human health, food security, and biodiversity. This review highlights both progress and gaps in genetic, developmental and environmental manipulations across the life sciences that either target the rate and direction of evolution, or reduce the mismatch between organisms and human-altered environments. Increased development and application of these underused tools will be vital in meeting current and future targets for sustainable development.

Journal ArticleDOI
TL;DR: In this article, a reliable and precise in situ CO2 and CO analysis system has been developed and deployed at eight sites in the NOAA Earth System Research Laboratory's (ESRL) Global Greenhouse Gas Reference Network.
Abstract: . A reliable and precise in situ CO2 and CO analysis system has been developed and deployed at eight sites in the NOAA Earth System Research Laboratory's (ESRL) Global Greenhouse Gas Reference Network. The network uses very tall (> 300 m) television and radio transmitter towers that provide a convenient platform for mid-boundary-layer trace-gas sampling. Each analyzer has three sample inlets for profile sampling, and a complete vertical profile is obtained every 15 min. The instrument suite at one site has been augmented with a cavity ring-down spectrometer for measuring CO2 and CH4. The long-term stability of the systems in the field is typically better than 0.1 ppm for CO2, 6 ppb for CO, and 0.5 ppb for CH4, as determined from repeated standard gas measurements. The instrumentation is fully automated and includes sensors for measuring a variety of status parameters, such as temperatures, pressures, and flow rates, that are inputs for automated alerts and quality control algorithms. Detailed and time-dependent uncertainty estimates have been constructed for all of the gases, and the uncertainty framework could be readily adapted to other species or analysis systems. The design emphasizes use of off-the-shelf parts and modularity to facilitate network operations and ease of maintenance. The systems report high-quality data with > 93% uptime. Recurrent problems and limitations of the current system are discussed along with general recommendations for high-accuracy trace-gas monitoring. The network is a key component of the North American Carbon Program and a useful model for future research-grade operational greenhouse gas monitoring efforts.

Journal ArticleDOI
Victoria K. Alogna1, M. K. Attaya2, P. Aucoin3, Štěpán Bahník4, S. Birch5, Angie R. Birt3, Brian H. Bornstein6, Samantha Bouwmeester7, Maria A. Brandimonte8, Charity Brown9, K. Buswell10, Curt A. Carlson11, Maria A. Carlson11, Simon Chu, Aleksandra Cislak12, M. Colarusso13, Melissa F. Colloff14, Kimberly S. Dellapaolera6, Jean-Francois Delvenne9, A. Di Domenico, Aaron Drummond15, Gerald Echterhoff16, John E. Edlund17, Casey Eggleston18, Beth Fairfield, Gregory Franco19, Fiona Gabbert20, Bradlee W. Gamblin21, Maryanne Garry19, R. Gentry10, Elizabeth Gilbert18, D. L. Greenberg22, Jamin Halberstadt1, Lauren C. Hall15, Peter J. B. Hancock23, D. Hirsch24, Glenys A. Holt25, Joshua Conrad Jackson1, Jonathan Jong26, Andre Kehn21, C. Koch10, René Kopietz16, U. Körner27, Melina A. Kunar14, Calvin K. Lai18, Stephen R. H. Langton23, Fábio Pitombo Leite28, Nicola Mammarella, John E. Marsh29, K. A. McConnaughy2, S. McCoy30, Alex H. McIntyre23, Christian A. Meissner31, Robert B. Michael19, A. A. Mitchell32, M. Mugayar-Baldocchi22, R. Musselman13, C. Ng1, Austin Lee Nichols33, Narina Nunez34, Matthew A. Palmer25, J. E. Pappagianopoulos2, Marilyn S. Petro32, Christopher R. Poirier2, Emma Portch9, M. Rainsford25, A. Rancourt30, C. Romig24, Eva Rubínová35, Mevagh Sanson19, Liam Satchell36, James D. Sauer36, Kimberly Schweitzer34, J. Shaheed10, Faye Collette Skelton29, G. A. Sullivan2, Kyle J. Susa37, Jessica K. Swanner31, W. B. Thompson38, R. Todaro24, Joanna Ulatowska, Tim Valentine20, Peter P. J. L. Verkoeijen7, Marek A. Vranka39, Kimberley A. Wade14, Christopher A. Was24, Dawn R. Weatherford40, K. Wiseman34, Tara Zaksaite9, Daniel V. Zuj25, Rolf A. Zwaan7 
TL;DR: This article found that participants who described the robber were 25% worse at identifying the robber in a lineup than were participants who instead listed U.S. states and capitals, which has been termed the verbal overshadowing effect.
Abstract: Trying to remember something now typically improves your ability to remember it later. However, after watching a video of a simulated bank robbery, participants who verbally described the robber were 25% worse at identifying the robber in a lineup than were participants who instead listed U.S. states and capitals—this has been termed the “verbal overshadowing” effect (Schooler & Engstler-Schooler, 1990). More recent studies suggested that this effect might be substantially smaller than first reported. Given uncertainty about the effect size, the influence of this finding in the memory literature, and its practical importance for police procedures, we conducted two collections of preregistered direct replications (RRR1 and RRR2) that differed only in the order of the description task and a filler task. In RRR1, when the description task immediately followed the robbery, participants who provided a description were 4% less likely to select the robber than were those in the control condition. In RRR2, when the description was delayed by 20 min, they were 16% less likely to select the robber. These findings reveal a robust verbal overshadowing effect that is strongly influenced by the relative timing of the tasks. The discussion considers further implications of these replications for our understanding of verbal overshadowing.

Journal ArticleDOI
24 Oct 2014-Science
TL;DR: These results demonstrate that despite cold temperatures and low-oxygen conditions, hunter-gatherers colonized extreme high-altitude Andean environments in the Terminal Pleistocene, within about 2 ky of the initial entry of humans to South America.
Abstract: Study of human adaptation to extreme environments is important for understanding our cultural and genetic capacity for survival. The Pucuncho Basin in the southern Peruvian Andes contains the highest-altitude Pleistocene archaeological sites yet identified in the world, about 900 meters above confidently dated contemporary sites. The Pucuncho workshop site [4355 meters above sea level (masl)] includes two fishtail projectile points, which date to about 12.8 to 11.5 thousand years ago (ka). Cuncaicha rock shelter (4480 masl) has a robust, well-preserved, and well-dated occupation sequence spanning the past 12.4 thousand years (ky), with 21 dates older than 11.5 ka. Our results demonstrate that despite cold temperatures and low-oxygen conditions, hunter-gatherers colonized extreme high-altitude Andean environments in the Terminal Pleistocene, within about 2 ky of the initial entry of humans to South America.

Journal ArticleDOI
TL;DR: The case of agricultural intensification in pre-Hispanic highland Mexico is used in this paper to illustrate major points of the paper, and a course for integration of diverse literature to investigate the emergence and developmental trajectories of complex societies is proposed.
Abstract: Investigations of the evolutionary dynamics of cooperation and collective action provide productive venues for theorizing social complexity, yet this multidisciplinary scholarship contains analytical and epistemological tensions that require reconciliation. We propose a course for integration of this diverse literature to investigate the emergence and developmental trajectories of complex societies. Greater attention to collective action problems, cultural mechanisms that promote cooperation, differentiation of human interests, and multiscalar research designs provide firmer conceptual underpinnings for a theoretically grounded cultural evolutionary framework. The case of agricultural intensification in pre-Hispanic highland Mexico is used to illustrate major points of the paper.

Journal ArticleDOI
TL;DR: Onshore and offshore studies show that an expanded, grounded ice sheet occupied the Ross Sea Embayment during the Last Glacial Maximum (LGM) as discussed by the authors, and the results from studies of till provenance and the orienta...

Journal ArticleDOI
TL;DR: In this paper, the mechanical, optical and barrier properties of nanofibrillated cellulose (NFC) and microfibrilled cellulose films were studied in order to understand their potential for packaging and functional printing applications.
Abstract: Nanocellulose is an interesting building block for functional materials and has gained considerable interest due to its mechanical robustness, large surface area and biodegradability. It can be formed into various structures such as solids, films and gels such as hydrogels and aerogels and combined with polymers or other materials to form composites. Mechanical, optical and barrier properties of nanofibrillated cellulose (NFC) and microfibrillated cellulose (MFC) films were studied in order to understand their potential for packaging and functional printing applications. Impact of raw material choice and nanocellulose production process on these properties was evaluated. MFC and NFC were produced following two different routes. NFC was produced using a chemical pretreatment followed by a high pressure homogenization, whereas MFC was produced using a mechanical treatment only. TEMPO-mediated oxidation followed by one step of high pressure (2,000 bar) homogenization seems to produce a similar type of NFC from both hardwood and softwood. NFC films showed superior mechanical and optical properties compared with MFC films; however, MFC films demonstrated better barrier properties against oxygen and water vapor. Both the MFC and NFC films were excellent barriers against mineral oil used in ordinary printing inks and dichlorobenzene, a common solvent used in functional printing inks. Barrier properties against vegetable oil were also found to be exceptionally good for both the NFC and MFC films.

Journal ArticleDOI
TL;DR: In this article, a modulation strategy has been proposed that results in 1) open-loop power factor correction; 2) zero current switching in the ac-side converter for all load conditions; 3) linear power relationship for easy control implementation; and 4) zero voltage switching in a load side converter.
Abstract: A dual-active-bridge-based single-stage ac/dc converter may find a wide range of emerging applications such as interfacing plug-in hybrid vehicles with the ac grid, interconnection of dc grid, etc. This type of converter can be used due to unique features such as 1) high-frequency isolation resulting in a) high power density and b) safety and voltage matching; 2) bidirectional power flow; 3) soft switching leading to higher efficiency. In this paper, a modulation strategy has been proposed that results in 1) open-loop power factor correction; 2) zero current switching in the ac-side converter for all load conditions; 3) linear power relationship for easy control implementation; and 4) Zero voltage switching in the load side converter. The converter with the proposed control has been analyzed. Simulation and experimental results on a 1-KW prototype confirm the advantages.

Journal ArticleDOI
TL;DR: This study shows that IAPV is established as a persistent infection in honey bee populations, likely enabled by both horizontal and vertical transmission pathways, and indicates a novel therapeutic strategy for limiting multiple honey bee viruses simultaneously and reducing colony losses due to viral diseases.
Abstract: Israeli acute paralysis virus (IAPV) is a widespread RNA virus of honey bees that has been linked with colony losses. Here we describe the transmission, prevalence, and genetic traits of this virus, along with host transcriptional responses to infections. Further, we present RNAi-based strategies for limiting an important mechanism used by IAPV to subvert host defenses. Our study shows that IAPV is established as a persistent infection in honey bee populations, likely enabled by both horizontal and vertical transmission pathways. The phenotypic differences in pathology among different strains of IAPV found globally may be due to high levels of standing genetic variation. Microarray profiles of host responses to IAPV infection revealed that mitochondrial function is the most significantly affected biological process, suggesting that viral infection causes significant disturbance in energy-related host processes. The expression of genes involved in immune pathways in adult bees indicates that IAPV infection triggers active immune responses. The evidence that silencing an IAPV-encoded putative suppressor of RNAi reduces IAPV replication suggests a functional assignment for a particular genomic region of IAPV and closely related viruses from the Family Dicistroviridae, and indicates a novel therapeutic strategy for limiting multiple honey bee viruses simultaneously and reducing colony losses due to viral diseases. We believe that the knowledge and insights gained from this study will provide a new platform for continuing studies of the IAPV–host interactions and have positive implications for disease management that will lead to mitigation of escalating honey bee colony losses worldwide.

Journal ArticleDOI
TL;DR: In this article, Ru catalysts with a wide range of dispersion on carbon, silica, alumina, and titania supports were synthesized, characterized and evaluated for hydrodeoxygenation (HDO) activity using phenol as a model compound.
Abstract: Substituted phenols are the most recalcitrant oxygenates in conventional pyrolysis oils and the dominant oxygenates in lower-oxygen content, formate-assisted pyrolysis oils (FAsP). Ru catalysts with a wide range of dispersion on carbon, silica, alumina, and titania supports were synthesized, characterized and evaluated for hydrodeoxygenation (HDO) activity using phenol as a model compound. Metal content, phase, and particle size were determined with ICP-OES, EXAFS/XANES, and CO pulse chemisorption, respectively. High dispersion of ruthenium on the supports converts more phenol to products. The majority of catalysts predominantly catalyze the hydrogenation (HYD) route typical of noble metal catalysts. A highly dispersed Ru/TiO2 catalyst shows unusually high selectivity toward direct deoxygenation (DDO) and outstanding activity. We suggest that the DDO pathway on titania involves a bifunctional catalyst, where hydrogen creates reduced titania sites, created by hydrogen spillover, that interact strongly with the phenol hydroxyl group.

Journal ArticleDOI
TL;DR: Goupee et al. as mentioned in this paper used a 1:50 Froude scale model of a wind turbine supported by three different generic floating platforms: a spar, a semisubmersible, and a tension-leg platform.
Abstract: Wind energy is a promising alternate energy resource. However, the on-land wind farms are limited by space, noise, and visual pollution and, therefore, many countries build wind farms near the shore. Until now, most offshore wind farms have been built in relatively shallow water (less than 30 m) with fixed tower type wind turbines. Recently, several countries have planned to move wind farms to deep water offshore locations to find stronger and steadier wind fields as compared to near shore locations. For the wind farms in deeper water, floating platforms have been proposed to support the wind turbine. The model tests described in this paper were performed at MARIN (maritime research institute netherlands) with a model setup corresponding to a 1:50 Froude scaling. The wind turbine was a scaled model of the national renewable energy lab (NREL) 5 MW horizontal axis reference wind turbine supported by three different generic floating platforms: a spar, a semisubmersible, and a tension-leg platform (TLP). The wave environment used in the tests is representative of the offshore in the state of Maine. In order to capture coupling between the floating platform and the wind turbine, the 1st bending mode of the turbine tower was also modeled. The main purpose of the model tests was to generate data on coupled motions and loads between the three floating platforms and the same wind turbine for the operational, design, and survival seas states. The data are to be used for the calibration and improvement of the existing design analysis and performance numerical codes. An additional objective of the model tests was to establish the advantages and disadvantages among the three floating platform concepts on the basis of the test data. The paper gives details of the scaled model wind turbine and floating platforms, the setup configurations, and the instrumentation to measure motions, accelerations, and loads along with the wind turbine rpm, torque, and thrust for the three floating wind turbines. The data and data analysis results are discussed in the work of Goupee et al. (2012, “Experimental Comparison of Three Floating Wind Turbine Concepts,” OMAE 2012-83645).

Journal ArticleDOI
TL;DR: In this paper, the results of a comprehensive data analysis are presented which illuminate the unique coupled system behavior of the three floating wind turbines subjected to combined wind and wave environments, with an emphasis placed on global motions, flexible tower dynamics and mooring system response.
Abstract: Beyond many of the Earth’s coasts exist a vast deepwater wind resource that can be tapped to provide substantial amounts of clean, renewable energy. However, much of this resource resides in waters deeper than 60 m where current fixed bottom wind turbine technology is no longer economically viable. As a result, many are looking to floating wind turbines as a means of harnessing this deepwater offshore wind resource. The preferred floating platform technology for this application, however, is currently up for debate. To begin the process of assessing the relative advantages of various platform concepts for floating wind turbines, 1/50 th scale model tests in a wind/wave basin were performed at MARIN (Maritime Research Institute Netherlands) of three floating wind turbine concepts. The Froude scaled tests simulated the behavior of the 126 m rotor diameter NREL (National Renewable Energy Lab) 5 MW, horizontal axis Reference Wind Turbine attached via a flexible tower in turn to three distinct platforms, these being a tension leg-platform, a spar-buoy and a semi-submersible. A large number of tests were performed ranging from simple free-decay tests to complex operating conditions with irregular sea states and dynamic winds. The high-quality wind environments, unique to these tests, were realized in the offshore basin via a novel wind machine which exhibited low swirl and turbulence intensity in the flow field. Recorded data from the floating wind turbine models include rotor torque and position, tower top and base forces and moments, mooring line tensions, six-axis platform motions and accelerations at key locations on the nacelle, tower, and platform. A comprehensive overview of the test program, including basic system identification results, is covered in an associated paper in this conference. In this paper, the results of a comprehensive data analysis are presented which illuminate the unique coupled system behavior of the three floating wind turbines subjected to combined wind and wave environments. The relative performance of each of the three systems is discussed with an emphasis placed on global motions, flexible tower dynamics and mooring system response. The results demonstrate the unique advantages and disadvantages of each floating wind turbine platform.

Journal ArticleDOI
TL;DR: Recent advances in invasive plant biology that have resulted from microbiome analyses as well as the microbial factors that direct plant fitness and adaptability in natural systems are discussed.
Abstract: Plants in terrestrial systems have evolved in direct association with microbes functioning as both agonists and antagonists of plant fitness and adaptability. As such, investigations that segregate plants and microbes provide only a limited scope of the biotic interactions that dictate plant community structure and composition in natural systems. Invasive plants provide an excellent working model to compare and contrast the effects of microbial communities associated with natural plant populations on plant fitness, adaptation, and fecundity. The last decade of DNA sequencing technology advancements opened the door to microbial community analysis, which has led to an increased awareness of the importance of an organism's microbiome and the disease states associated with microbiome shifts. Employing microbiome analysis to study the symbiotic networks associated with invasive plants will help us to understand what microorganisms contribute to plant fitness in natural systems, how different soil microbial communities impact plant fitness and adaptability, specificity of host-microbe interactions in natural plant populations, and the selective pressures that dictate the structure of above-ground and below-ground biotic communities. This review discusses recent advances in invasive plant biology that have resulted from microbiome analyses as well as the microbial factors that direct plant fitness and adaptability in natural systems.

Journal ArticleDOI
TL;DR: The findings highlight the importance of understanding soil depth differences for various forest types in the chemical composition of SOM and the processes governing SOM production and transformations to fully understand the ecological implications of changes in forest composition and function in a changing climate.
Abstract: Soil organic matter (SOM) is involved in many important soil processes such as carbon sequestration and the solubility of plant nutrients and metals. Ultrahigh resolution mass spectrometry was used to determine the influence of forest vegetation type and soil depth on the molecular composition of the water-extractable organic matter (WEOM) fraction. Contrasting the upper 0–5 cm with the 25–50 cm B horizon depth increment, the relative abundance of lipids and carbohydrates significantly increased, whereas condensed aromatics and tannins significantly decreased for the deciduous stand WEOM. No significant abundance changes were found for the coniferous stand DOM. Kendrick mass defect analysis showed that the WEOM of the 25–50 cm B horizon was depleted in oxygen-rich and higher mass components as compared to the 0–5 cm B horizon WEOM, suggesting that higher mass WEOM components with oxygen-containing functionality show greater reactivity in abiotic and/or biotic reactions. Furthermore, using an inoculated 14...

Journal ArticleDOI
TL;DR: This review provides a brief idea about the glycemic index, glycemic load, and their importance to human diseases, and detail information on the effect of food cooking methods on the gly glucose index of potatoes.

Journal ArticleDOI
TL;DR: Preliminary findings show that weight stigma is associated with greater biochemical stress, independent of level of adiposity, and it is possible thatWeight stigma may contribute to poor health underlying some forms of obesity.
Abstract: Objective: Weight discrimination is associated with increased risk of obesity. The mechanism of this relationship is unknown, but being overweight is a highly stigmatized condition and may be a source of chronic stress that contributes to the development and pathophysiology of obesity. The objective of this study was to test whether weight stigma is associated with physiological risk factors linked to stress and obesity, including hypercortisolism and oxidative stress, independent of