scispace - formally typeset
Search or ask a question
Institution

University of Maine

EducationOrono, Maine, United States
About: University of Maine is a education organization based out in Orono, Maine, United States. It is known for research contribution in the topics: Population & Ice sheet. The organization has 8637 authors who have published 16932 publications receiving 590124 citations. The organization is also known as: University of Maine at Orono.


Papers
More filters
Journal ArticleDOI
19 Oct 2006-Nature
TL;DR: It is indicated that there may have been at least four independent losses of the flagellum in the kingdom Fungi, and the enigmatic microsporidia seem to be derived from an endoparasitic chytrid ancestor similar to Rozella allomycis, on the earliest diverging branch of the fungal phylogenetic tree.
Abstract: The ancestors of fungi are believed to be simple aquatic forms with flagellated spores, similar to members of the extant phylum Chytridiomycota (chytrids). Current classifications assume that chytrids form an early-diverging clade within the kingdom Fungi and imply a single loss of the spore flagellum, leading to the diversification of terrestrial fungi. Here we develop phylogenetic hypotheses for Fungi using data from six gene regions and nearly 200 species. Our results indicate that there may have been at least four independent losses of the flagellum in the kingdom Fungi. These losses of swimming spores coincided with the evolution of new mechanisms of spore dispersal, such as aerial dispersal in mycelial groups and polar tube eversion in the microsporidia (unicellular forms that lack mitochondria). The enigmatic microsporidia seem to be derived from an endoparasitic chytrid ancestor similar to Rozella allomycis, on the earliest diverging branch of the fungal phylogenetic tree.

1,682 citations

Journal ArticleDOI
TL;DR: Accurate and timely national estimates of the prevalence of birth defects are needed for monitoring trends, assessing prevention efforts, determining service planning, and understanding the burden of disease due to birth defects in the United States.
Abstract: BACKGROUND: The National Birth Defects Prevention Network collects state-specific birth defects surveillance data for annual publication of prevalence estimates and collaborative research projects. In 2006, data for 21 birth defects from 1999 through 2001 were presented as national birth prevalence estimates. The purpose of this report was to update these estimates using data from 2004 through 2006. METHODS: Population-based data from 11 active case-finding programs, 6 passive case-finding programs with case confirmation, and 7 passive programs without case confirmation were used in this analysis. Pooled birth prevalence estimates for 21 birth defects, stratified by case ascertainment approach, were calculated. National prevalence estimates, adjusted for maternal race/ethnicity and maternal age (trisomy 13, trisomy 18, and Down syndrome only) were determined using data from 14 programs. The impact of pregnancy outcomes on prevalence estimates was also assessed for five specific defects. RESULTS: National birth defects prevalence estimates ranged from 0.72 per 10,000 live births for common truncus to 14.47 per 10,000 live births for Down syndrome. Stratification by type of surveillance system showed that active programs had a higher prevalence of anencephaly, anophthalmia/microphthalmia, cleft lip with or without cleft palate, reduction defect of upper limbs, and trisomy 18. The birth prevalence of anencephaly, trisomy 13, and trisomy 18 also varied substantially with inclusion of elective terminations. CONCLUSION: Accurate and timely national estimates of the prevalence of birth defects are needed for monitoring trends, assessing prevention efforts, determining service planning, and understanding the burden of disease due to birth defects in the United States. Birth Defects Research (Part A) 88:1008–1016, 2010. 2010 Wiley-Liss, Inc.

1,591 citations

Journal ArticleDOI
TL;DR: The conditions in which kelp forests develop globally and where, why and at what rate they become deforested are reviewed and overfishing appears to be the greatest manageable threat to kelp forest ecosystems over the 2025 time horizon.
Abstract: Kelp forests are phyletically diverse, structurally complex and highly productive components of coldwater rocky marine coastlines. This paper reviews the conditions in which kelp forests develop globally and where, why and at what rate they become deforested. The ecology and long archaeological history of kelp forests are examined through case studies from southern California, the Aleutian Islands and the western North Atlantic, well-studied locations that represent the widest possible range in kelp forest biodiversity. Global distribution of kelp forests is physiologically constrained by light at high latitudes and by nutrients, warm temperatures and other macrophytes at low latitudes. Within mid-latitude belts (roughly 40–60° latitude in both hemispheres) well-developed kelp forests are most threatened by herbivory, usually from sea urchins. Overfishing and extirpation of highly valued vertebrate apex predators often triggered herbivore population increases, leading to widespread kelp deforestation. Such deforestations have the most profound and lasting impacts on species-depauperate systems, such as those in Alaska and the western North Atlantic. Globally urchin-induced deforestation has been increasing over the past 2–3 decades. Continued fishing down of coastal food webs has resulted in shifting harvesting targets from apex predators to their invertebrate prey, including kelp-grazing herbivores. The recent global expansion of sea urchin harvesting has led to the widespread extirpation of this herbivore, and kelp forests have returned in some locations but, for the first time, these forests are devoid of vertebrate apex predators. In the western North Atlantic, large predatory crabs have recently filled this void and they have become the new apex predator in this system. Similar shifts from fish- to crab-dominance may have occurred in coastal zones of the United Kingdom and Japan, where large predatory finfish were extirpated long ago. Three North American case studies of kelp forests were examined to determine their long history with humans and project the status of future kelp forests to the year 2025. Fishing impacts on kelp forest systems have been both profound and much longer in duration than previously thought. Archaeological data suggest that coastal peoples exploited kelp forest organisms for thousands of years, occasionally resulting in localized losses of apex predators, outbreaks of sea urchin populations and probably small-scale deforestation. Over the past two centuries, commercial exploitation for export led to the extirpation of sea urchin predators, such as the sea otter in the North Pacific and predatory fishes like the cod in the North Atlantic. The large-scale removal of predators for export markets increased sea urchin abundances and promoted the decline of kelp forests over vast areas. Despite southern California having one of the longest known associations with coastal kelp forests, widespread deforestation is rare. It is possible that functional redundancies among predators and herbivores make this most diverse system most stable. Such biodiverse kelp forests may also resist invasion from non-native species. In the species-depauperate western North Atlantic, introduced algal competitors carpet the benthos and threaten future kelp dominance. There, other non-native herbivores and predators have become established and dominant components of this system. Climate changes have had measurable impacts on kelp forest ecosystems and efforts to control the emission of greenhouse gasses should be a global priority. However, overfishing appears to be the greatest manageable threat to kelp forest ecosystems over the 2025 time horizon. Management should focus on minimizing fishing impacts and restoring populations of functionally important species in these systems.

1,583 citations

Journal ArticleDOI
TL;DR: A novel theory of topological spatial relations between sets is developed in which the relations are defined in terms of the intersections of the boundaries and interiors of two sets, and it is shown that these relations correspond to some of the standard set theoretical andTopological spatial Relations between sets such as equality, disjointness and containment in the interior.
Abstract: Practical needs in geographic information systems (GIS) have led to the investigation of formal and sound methods of describing spatial relations. After an introduction to the basic ideas and notions of topology, a novel theory of topological spatial relations between sets is developed in which the relations are defined in terms of the intersections of the boundaries and interiors of two sets. By considering empty and non-empty as the values of the intersections, a total of sixteen topological spatial relations is described, each of which can be realized in R 2. This set is reduced to nine relations if the sets are restricted to spatial regions, a fairly broad class of subsets of a connected topological space with an application to GIS. It is shown that these relations correspond to some of the standard set theoretical and topological spatial relations between sets such as equality, disjointness and containment in the interior.

1,541 citations

Journal ArticleDOI
TL;DR: Experimentally manipulated the density of large herbivorous fishes to test their influence on the resilience of coral assemblages in the aftermath of regional-scale bleaching in 1998, the largest coral mortality event recorded to date.

1,427 citations


Authors

Showing all 8729 results

NameH-indexPapersCitations
Clifford J. Rosen11165547881
Juan S. Bonifacino10830346554
John D. Aber10720448500
Surendra P. Shah9971032832
Charles T. Driscoll9755437355
Samuel Madden9538846424
Lihua Xiao9349532721
Patrick G. Hatcher9140127519
Pedro J. J. Alvarez8937834837
George R. Pettit8984831759
James R. Wilson89127137470
Steven Girvin8636638963
Peter Marler8117422070
Garry R. Buettner8030429273
Paul Andrew Mayewski8042029356
Network Information
Related Institutions (5)
Texas A&M University
164.3K papers, 5.7M citations

92% related

Pennsylvania State University
196.8K papers, 8.3M citations

91% related

Michigan State University
137K papers, 5.6M citations

91% related

University of Maryland, College Park
155.9K papers, 7.2M citations

91% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202332
2022134
2021834
2020756
2019738
2018725