scispace - formally typeset
Search or ask a question
Institution

University of Maine

EducationOrono, Maine, United States
About: University of Maine is a education organization based out in Orono, Maine, United States. It is known for research contribution in the topics: Population & Ice sheet. The organization has 8637 authors who have published 16932 publications receiving 590124 citations. The organization is also known as: University of Maine at Orono.


Papers
More filters
Journal ArticleDOI
TL;DR: The science is reviewed, the most crucial gaps are identified, and ways to fill them are suggested so that a promising management tool can help meet the growing challenges faced by coastal marine fisheries.
Abstract: As well as serving valuable biodiversity conservation roles, functioning no-take fishery reserves protect a portion of the fishery stock as insurance against future overfishing. So long as there is adequate compliance by the fishing community, it is likely that they will also sustain and even enhance fishery yields in the surrounding area. However, there are significant gaps in scientific knowledge that must be filled if no-take reserves are to be used effectively as fishery management tools. Unfortunately, these gaps are being glossed over by some uncritical advocacy. Here, we review the science, identify the most crucial gaps, and suggest ways to fill them, so that a promising management tool can help meet the growing challenges faced by coastal marine fisheries.

832 citations

Journal ArticleDOI
TL;DR: In this paper, the authors assess 10 start-of-spring (SOS) methods for North America between 1982 and 2006 and find that SOS estimates were more related to the first leaf and first flowers expanding phenological stages.
Abstract: Shifts in the timing of spring phenology are a central feature of global change research. Long-term observations of plant phenology have been used to track vegetation responses to climate variability but are often limited to particular species and locations and may not represent synoptic patterns. Satellite remote sensing is instead used for continental to global monitoring. Although numerous methods exist to extract phenological timing, in particular start-of-spring (SOS), from time series of reflectance data, a comprehensive intercomparison and interpretation of SOS methods has not been conducted. Here, we assess 10 SOS methods for North America between 1982 and 2006. The techniques include consistent inputs from the 8 km Global Inventory Modeling and Mapping Studies Advanced Very High Resolution Radiometer NDVIg dataset, independent data for snow cover, soil thaw, lake ice dynamics, spring streamflow timing, over 16 000 individual measurements of ground-based phenology, and two temperature-driven models of spring phenology. Compared with an ensemble of the 10 SOS methods, we found that individual methods differed in average day-of-year estimates by � 60 days and in standard deviation by � 20 days. The ability of the satellite methods to retrieve SOS estimates was highest in northern latitudes and lowest in arid, tropical, and Mediterranean ecoregions. The ordinal rank of SOS methods varied geographically, as did the relationships between SOS estimates and the cryospheric/hydrologic metrics. Compared with ground observations, SOS estimates were more related to the first leaf and first flowers expanding phenological stages. We found no evidence for time trends in spring arrival from ground- or model-based data; using an ensemble estimate from two methods that were more closely related to ground observations than other methods, SOS

831 citations

Journal ArticleDOI
TL;DR: A light microscope that generates images with translationally invariant 30 × 30 × 75nm resolution over a depth of several micrometers enabling 3D sub-diffraction resolution without compromising speed or sensitivity is reported.
Abstract: Imaging volumes as thick as whole cells at three-dimensional (3D) super-resolution is required to reveal unknown features of cellular organization. We report a light microscope that generates images with translationally invariant 30 x 30 x 75 nm resolution over a depth of several micrometers. This method, named biplane (BP) FPALM, combines a double-plane detection scheme with fluorescence photoactivation localization microscopy (FPALM) enabling 3D sub-diffraction resolution without compromising speed or sensitivity.

824 citations

Journal ArticleDOI
Ward Appeltans1, Shane T. Ahyong2, Shane T. Ahyong3, Gary L. Anderson4, Martin V. Angel5, Tom Artois6, Nicolas Bailly7, Roger N. Bamber, Anthony Barber, Ilse Bartsch8, Annalisa Berta9, Magdalena Błażewicz-Paszkowycz, Phil Bock10, Geoff A. Boxshall11, Christopher B. Boyko12, Simone N. Brandão13, R. A. Bray11, Niel L. Bruce14, Niel L. Bruce15, Stephen D. Cairns16, Tin-Yam Chan17, Lanna Cheng18, Allen Gilbert Collins19, Thomas H. Cribb20, Marco Curini-Galletti21, Farid Dahdouh-Guebas22, Farid Dahdouh-Guebas23, Peter J. F. Davie24, Michael N Dawson25, Olivier De Clerck26, Wim Decock1, Sammy De Grave8, Nicole J. de Voogd27, Daryl P. Domning28, Christian C. Emig, Christer Erséus29, William N. Eschmeyer30, William N. Eschmeyer31, Kristian Fauchald16, Daphne G. Fautin8, Stephen W. Feist32, Charles H. J. M. Fransen27, Hidetaka Furuya33, Óscar García-Álvarez34, Sarah Gerken35, David I. Gibson11, Arjan Gittenberger27, Serge Gofas36, Liza Gómez-Daglio25, Dennis P. Gordon37, Michael D. Guiry38, Francisco Hernandez1, Bert W. Hoeksema27, Russell R. Hopcroft39, Damià Jaume40, Paul M. Kirk41, Nico Koedam23, Stefan Koenemann42, Jürgen B. Kolb43, Reinhardt Møbjerg Kristensen44, Andreas Kroh45, Gretchen Lambert46, David Lazarus47, Rafael Lemaitre16, Matt Longshaw32, Jim Lowry2, Enrique Macpherson40, Laurence P. Madin48, Christopher L. Mah16, Gill Mapstone11, Patsy A. McLaughlin49, Jan Mees1, Jan Mees26, Kenneth Meland50, Charles G. Messing51, Claudia E. Mills46, Tina N. Molodtsova52, Rich Mooi30, Birger Neuhaus47, Peter K. L. Ng53, Claus Nielsen44, Jon L. Norenburg16, Dennis M. Opresko16, Masayuki Osawa54, Gustav Paulay31, William F. Perrin19, John F. Pilger55, Gary C. B. Poore10, P.R. Pugh5, Geoffrey B. Read37, James Davis Reimer56, Marc Rius57, Rosana M. Rocha58, J.I. Saiz-Salinas59, Victor Scarabino, Bernd Schierwater60, Andreas Schmidt-Rhaesa13, Kareen E. Schnabel37, Marilyn Schotte16, Peter Schuchert, Enrico Schwabe, Hendrik Segers61, Caryn Self-Sullivan51, Noa Shenkar62, Volker Siegel, Wolfgang Sterrer8, Sabine Stöhr63, Billie J. Swalla46, Mark L. Tasker64, Erik V. Thuesen65, Tarmo Timm66, M. Antonio Todaro, Xavier Turon40, Seth Tyler67, Peter Uetz68, Jacob van der Land27, Bart Vanhoorne1, Leen van Ofwegen27, Rob W. M. Van Soest27, Jan Vanaverbeke26, Genefor Walker-Smith10, T. Chad Walter16, Alan Warren11, Gary C. Williams30, Simon P. Wilson69, Mark J. Costello70 
Flanders Marine Institute1, Australian Museum2, University of New South Wales3, University of Southern Mississippi4, National Oceanography Centre, Southampton5, University of Hasselt6, WorldFish7, American Museum of Natural History8, San Diego State University9, Museum Victoria10, Natural History Museum11, Dowling College12, University of Hamburg13, James Cook University14, University of Johannesburg15, National Museum of Natural History16, National Taiwan Ocean University17, Scripps Institution of Oceanography18, National Oceanic and Atmospheric Administration19, University of Queensland20, University of Sassari21, Université libre de Bruxelles22, Vrije Universiteit Brussel23, Queensland Museum24, University of California, Merced25, Ghent University26, Naturalis27, Howard University28, University of Gothenburg29, California Academy of Sciences30, Florida Museum of Natural History31, Centre for Environment, Fisheries and Aquaculture Science32, Osaka University33, University of Santiago de Compostela34, University of Alaska Anchorage35, University of Málaga36, National Institute of Water and Atmospheric Research37, National University of Ireland, Galway38, University of Alaska Fairbanks39, Spanish National Research Council40, CABI41, University of Siegen42, Massey University43, University of Copenhagen44, Naturhistorisches Museum45, University of Washington46, Museum für Naturkunde47, Woods Hole Oceanographic Institution48, Western Washington University49, University of Bergen50, Nova Southeastern University51, Shirshov Institute of Oceanology52, National University of Singapore53, Shimane University54, Agnes Scott College55, University of the Ryukyus56, University of California, Davis57, Federal University of Paraná58, University of the Basque Country59, University of Veterinary Medicine Hanover60, Royal Belgian Institute of Natural Sciences61, Tel Aviv University62, Swedish Museum of Natural History63, Joint Nature Conservation Committee64, The Evergreen State College65, Estonian University of Life Sciences66, University of Maine67, Virginia Commonwealth University68, Trinity College, Dublin69, University of Auckland70
TL;DR: The first register of the marine species of the world is compiled and it is estimated that between one-third and two-thirds of marine species may be undescribed, and previous estimates of there being well over one million marine species appear highly unlikely.

822 citations

Journal ArticleDOI
TL;DR: The effects of mobile fishing gear on biodiversity are most severe where natural disturbance is least prevalent, particularly on the outer continental shelf and slope, where storm-wave damage is negligible and biological processes, including growth, tend to be slow as discussed by the authors.
Abstract: Bottom trawling and use of other mobile fishing gear have effects on the seabed that resemble forest clearcutting, a terrestrial disturbance recognized as a major threat to biological diversity and economic sustainability. Structures in marine benthic communities are generally much smaller than those in forests, but structural complexity is no less important to their biodiversity. Use of mobile fishing gear crushes, buries, and exposes marine animals and structures on and in the substratum, sharply reducing structural diversity. Its severity is roughly comparable to other natural and anthropogenic marine disturbances. It also alters biogeochemical cycles, perhaps even globally. Recovery after disturbance is often slow because recruitment is patchy and growth to maturity takes years, decades, or more for some structure-forming species. Trawling and dredging are especially problematic where the return interval—the time from one dredging or trawling event to the next—is shorter than the time it takes for the ecosystem to recover; extensive areas can be trawled 100–700% per year or more. The effects of mobile fishing gear on biodiversity are most severe where natural disturbance is least prevalent, particularly on the outer continental shelf and slope, where storm-wave damage is negligible and biological processes, including growth, tend to be slow. Recent advances in fishing technology (e.g., rockhopper gear, global positioning systems, fish finders) have all but eliminated what were de facto refuges from trawling. The frequency of trawling (in percentage of the continental shelf trawled per year) is orders of magnitude higher than other severe seabed disturbances, annually covering an area equivalent to perhaps half of the world’s continental shelf, or 150 times the land area that is clearcut yearly. Mobile fishing gear can have large and long-lasting effects on benthic communities, including young stages of commercially important fishes, although some species benefit when structural complexity is reduced. These findings are crucial for implementation of “Essential Fish Habitat” provisions of the U.S. Magnuson-Stevens Fishery Conservation and Management Act which aim to protect nursery and feeding habitat for commercial fishes. Using a precautionary approach to management, modifying fishing methods, and creating refuges free of mobile fishing gear are ways to reduce effects on biological diversity and commercial fish habitat. Perturbaciones del Lecho Marino por Artes de Pesca Mobiles: Una Comparacion con la Tala Forestals Los arrastres de fondo y el uso de otras artes de pesca moviles tienen efectos en el lecho marino que se asemejan a la tala total de bosques, que es a su vez una pertubacion terrestre reconocida como una de las mayores amenazas a la diversidad biologica y la sustentabilidad economica. Las estructuras en comunidades marinas benticas son generalmente mucho mas pequenas que aquellas en los bosques, pero la complejidad estructural no es menos importante que la biodiversidad. El uso de artes de pesca moviles quiebra, sepulta y expone animales marinos y estructuras sobre y en el substrato, reduciendo marcadamente la diversidad estructural. Su severidad es burdamente comparable con otras perturbaciones marinas de orden natural o antropogenico. Tambien altera los ciclos biogeoquimicos, de hecho a nivel mundial. La recuperacion despues de una pertubacion es frecuentemente lenta debido a que el reclutamiento es por parches y el crecimiento para alcanzar la madurez toma anos, decadas o aun mas para algunas especies que forman estructuras. Los arrastres de fondo y dragados son especialmente problematicos donde el intervalo de retorno (tiempo entre un evento de dragado o arrastre y otro) es mas corto que el tiempo que toma a un ecosistema recuperarse;arears extensas son arrastradas entre un 100 y 700% por ano o mas. Los efectos de las artes de pesca moviles en la biodiversidad son mas severos cuando las perturbaciones naturales son menos prevalentes, particularmente en las afueras de la plataforma continental y la pendiente, donde el dano del oleaje por tormentas es negligible y los procesos biologicos (incluyendo crecimiento) tienden a ser lentos. Recientes avances en tecnologia pesquera (e.g., sistemas de posicionamiento global, detectores de peces) aparentemente tienen todo, pero eliminan lo que de facto fueran refugios contra arrastres. La frecuencia de los arrastres (en porcentaje de la plataforma continental arrastrada por ano) es ordenes de magnitud mayor que otras perturbaciones severas al lecho marino, anualmente la cobertura de area es equivalente quiza a la mitad de la plataforma continental marina, o 150 veces el area de tierra que es talada anualmente. Las artes de pesca moviles pueden tener impactos grandes y de larga duracion en las comunidades bentonicas, incluyendo estadios jovenes de peces de importancia comercial, aunque algunas especies se benefician cuando la complejidad estructural es reducida. Estos descubrimientos son cruciales para la implementacion de el “habitat esencial para peces” del Acta de Conservacion y Manejo de Pesquerias Magnuson-Stevens de los Estados Unidos y que pretende establecer habitats de reproduccion y alimentacion para peces comerciales. El uso de una aproximacion precautoria de manejo, la modificacion de metodos de pesca y la creacion de refugios libres de artes de pesca moviles son formas para reducir los efectos en la diversidad biologica y el habitat para peces comerciales.

798 citations


Authors

Showing all 8729 results

NameH-indexPapersCitations
Clifford J. Rosen11165547881
Juan S. Bonifacino10830346554
John D. Aber10720448500
Surendra P. Shah9971032832
Charles T. Driscoll9755437355
Samuel Madden9538846424
Lihua Xiao9349532721
Patrick G. Hatcher9140127519
Pedro J. J. Alvarez8937834837
George R. Pettit8984831759
James R. Wilson89127137470
Steven Girvin8636638963
Peter Marler8117422070
Garry R. Buettner8030429273
Paul Andrew Mayewski8042029356
Network Information
Related Institutions (5)
Texas A&M University
164.3K papers, 5.7M citations

92% related

Pennsylvania State University
196.8K papers, 8.3M citations

91% related

Michigan State University
137K papers, 5.6M citations

91% related

University of Maryland, College Park
155.9K papers, 7.2M citations

91% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202332
2022134
2021834
2020756
2019738
2018725