scispace - formally typeset
Search or ask a question
Institution

University of Mainz

EducationMainz, Rheinland-Pfalz, Germany
About: University of Mainz is a education organization based out in Mainz, Rheinland-Pfalz, Germany. It is known for research contribution in the topics: Population & Immune system. The organization has 37673 authors who have published 71163 publications receiving 2497880 citations. The organization is also known as: Johannes Gutenberg-Universität Mainz & Universität Mainz.


Papers
More filters
Journal ArticleDOI
Keith A. Olive1, Kaustubh Agashe2, Claude Amsler3, Mario Antonelli  +222 moreInstitutions (107)
TL;DR: The review as discussed by the authors summarizes much of particle physics and cosmology using data from previous editions, plus 3,283 new measurements from 899 Japers, including the recently discovered Higgs boson, leptons, quarks, mesons and baryons.
Abstract: The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,283 new measurements from 899 Japers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as heavy neutrinos, supersymmetric and technicolor particles, axions, dark photons, etc. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as Supersymmetry, Extra Dimensions, Particle Detectors, Probability, and Statistics. Among the 112 reviews are many that are new or heavily revised including those on: Dark Energy, Higgs Boson Physics, Electroweak Model, Neutrino Cross Section Measurements, Monte Carlo Neutrino Generators, Top Quark, Dark Matter, Dynamical Electroweak Symmetry Breaking, Accelerator Physics of Colliders, High-Energy Collider Parameters, Big Bang Nucleosynthesis, Astrophysical Constants and Cosmological Parameters.

7,337 citations

Journal ArticleDOI
TL;DR: In this article, a review of recent experimental and theoretical progress concerning many-body phenomena in dilute, ultracold gases is presented, focusing on effects beyond standard weakcoupling descriptions, such as the Mott-Hubbard transition in optical lattices, strongly interacting gases in one and two dimensions, or lowest-Landau-level physics in quasi-two-dimensional gases in fast rotation.
Abstract: This paper reviews recent experimental and theoretical progress concerning many-body phenomena in dilute, ultracold gases. It focuses on effects beyond standard weak-coupling descriptions, such as the Mott-Hubbard transition in optical lattices, strongly interacting gases in one and two dimensions, or lowest-Landau-level physics in quasi-two-dimensional gases in fast rotation. Strong correlations in fermionic gases are discussed in optical lattices or near-Feshbach resonances in the BCS-BEC crossover.

6,601 citations

Journal ArticleDOI
Clotilde Théry1, Kenneth W. Witwer2, Elena Aikawa3, María José Alcaraz4  +414 moreInstitutions (209)
TL;DR: The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities, and a checklist is provided with summaries of key points.
Abstract: The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines for the field in 2014. We now update these “MISEV2014” guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points.

5,988 citations

Journal ArticleDOI
Daniel J. Klionsky1, Kotb Abdelmohsen2, Akihisa Abe3, Joynal Abedin4  +2519 moreInstitutions (695)
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.

5,187 citations

Journal ArticleDOI
K. Hagiwara, Ken Ichi Hikasa1, Koji Nakamura, Masaharu Tanabashi1, M. Aguilar-Benitez, Claude Amsler2, R. M. Barnett3, Patricia R. Burchat4, C. D. Carone5, C. Caso, G. Conforto6, Olav Dahl3, Michael Doser7, Semen Eidelman8, Jonathan L. Feng9, L. K. Gibbons10, Maury Goodman11, Christoph Grab12, D. E. Groom3, Atul Gurtu7, Atul Gurtu13, K. G. Hayes14, J. J. Herna`ndez-Rey15, K. Honscheid16, Christopher Kolda17, Michelangelo L. Mangano7, David Manley18, Aneesh V. Manohar19, John March-Russell7, Alberto Masoni, Ramon Miquel3, Klaus Mönig, Hitoshi Murayama3, Hitoshi Murayama20, S. Sánchez Navas12, Keith A. Olive21, Luc Pape7, C. Patrignani, A. Piepke22, Matts Roos23, John Terning24, Nils A. Tornqvist23, T. G. Trippe3, Petr Vogel25, C. G. Wohl3, Ron L. Workman26, W-M. Yao3, B. Armstrong3, P. S. Gee3, K. S. Lugovsky, S. B. Lugovsky, V. S. Lugovsky, Marina Artuso27, D. Asner28, K. S. Babu29, E. L. Barberio7, Marco Battaglia7, H. Bichsel30, O. Biebel31, Philippe Bloch7, Robert N. Cahn3, Ariella Cattai7, R. S. Chivukula32, R. Cousins33, G. A. Cowan34, Thibault Damour35, K. Desler, R. J. Donahue3, D. A. Edwards, Victor Daniel Elvira, Jens Erler36, V. V. Ezhela, A Fassò7, W. Fetscher12, Brian D. Fields37, B. Foster38, Daniel Froidevaux7, Masataka Fukugita39, Thomas K. Gaisser40, L. Garren, H.-J. Gerber12, Frederick J. Gilman41, Howard E. Haber42, C. A. Hagmann28, J.L. Hewett4, Ian Hinchliffe3, Craig J. Hogan30, G. Höhler43, P. Igo-Kemenes44, John David Jackson3, Kurtis F Johnson45, D. Karlen, B. Kayser, S. R. Klein3, Konrad Kleinknecht46, I.G. Knowles47, P. Kreitz4, Yu V. Kuyanov, R. Landua7, Paul Langacker36, L. S. Littenberg48, Alan D. Martin49, Tatsuya Nakada50, Tatsuya Nakada7, Meenakshi Narain32, Paolo Nason, John A. Peacock47, Helen R. Quinn4, Stuart Raby16, Georg G. Raffelt31, E. A. Razuvaev, B. Renk46, L. Rolandi7, Michael T Ronan3, L.J. Rosenberg51, Christopher T. Sachrajda52, A. I. Sanda53, Subir Sarkar54, Michael Schmitt55, O. Schneider50, Douglas Scott56, W. G. Seligman57, Michael H. Shaevitz57, Torbjörn Sjöstrand58, George F. Smoot3, Stefan M Spanier4, H. Spieler3, N. J. C. Spooner59, Mark Srednicki60, A. Stahl, Todor Stanev40, M. Suzuki3, N. P. Tkachenko, German Valencia61, K. van Bibber28, Manuella Vincter62, D. R. Ward63, Bryan R. Webber63, M R Whalley49, Lincoln Wolfenstein41, J. Womersley, C. L. Woody48, O. V. Zenin 
Tohoku University1, University of Zurich2, Lawrence Berkeley National Laboratory3, Stanford University4, College of William & Mary5, University of Urbino6, CERN7, Budker Institute of Nuclear Physics8, University of California, Irvine9, Cornell University10, Argonne National Laboratory11, ETH Zurich12, Tata Institute of Fundamental Research13, Hillsdale College14, Spanish National Research Council15, Ohio State University16, University of Notre Dame17, Kent State University18, University of California, San Diego19, University of California, Berkeley20, University of Minnesota21, University of Alabama22, University of Helsinki23, Los Alamos National Laboratory24, California Institute of Technology25, George Washington University26, Syracuse University27, Lawrence Livermore National Laboratory28, Oklahoma State University–Stillwater29, University of Washington30, Max Planck Society31, Boston University32, University of California, Los Angeles33, Royal Holloway, University of London34, Université Paris-Saclay35, University of Pennsylvania36, University of Illinois at Urbana–Champaign37, University of Bristol38, University of Tokyo39, University of Delaware40, Carnegie Mellon University41, University of California, Santa Cruz42, Karlsruhe Institute of Technology43, Heidelberg University44, Florida State University45, University of Mainz46, University of Edinburgh47, Brookhaven National Laboratory48, Durham University49, University of Lausanne50, Massachusetts Institute of Technology51, University of Southampton52, Nagoya University53, University of Oxford54, Northwestern University55, University of British Columbia56, Columbia University57, Lund University58, University of Sheffield59, University of California, Santa Barbara60, Iowa State University61, University of Alberta62, University of Cambridge63
TL;DR: This biennial Review summarizes much of Particle Physics using data from previous editions, plus 2205 new measurements from 667 papers, and features expanded coverage of CP violation in B mesons and of neutrino oscillations.
Abstract: This biennial Review summarizes much of Particle Physics. Using data from previous editions, plus 2205 new measurements from 667 papers, we list, evaluate, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons. We also summarize searches for hypothetical particles such as Higgs bosons, heavy neutrinos, and supersymmetric particles. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as the Standard Model, particle detectors, probability, and statistics. This edition features expanded coverage of CP violation in B mesons and of neutrino oscillations. For the first time we cover searches for evidence of extra dimensions (both in the particle listings and in a new review). Another new review is on Grand Unified Theories. A booklet is available containing the Summary Tables and abbreviated versions of some of the other sections of this full Review. All tables, listings, and reviews (and errata) are also available on the Particle Data Group website: http://pdg.lbl.gov.

5,143 citations


Authors

Showing all 38009 results

NameH-indexPapersCitations
Patrick W. Serruys1862427173210
Michael Kramer1671713127224
Marc Weber1672716153502
Klaus Müllen1642125140748
J. E. Brau1621949157675
Wolfgang Wagner1562342123391
Thomas Meitinger155716108491
Florian Holsboer15192986351
Jongmin Lee1502257134772
György Buzsáki15044696433
Galen D. Stucky144958101796
Yi Yang143245692268
Brajesh C Choudhary1431618108058
Tim Adye1431898109010
Karl Jakobs138137997670
Network Information
Related Institutions (5)
Ludwig Maximilian University of Munich
161.5K papers, 5.7M citations

97% related

Heidelberg University
119.1K papers, 4.6M citations

97% related

Technische Universität München
123.4K papers, 4M citations

93% related

University of Zurich
124K papers, 5.3M citations

93% related

University of Barcelona
108.5K papers, 3.7M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023230
2022490
20213,564
20203,447
20193,147
20182,863