scispace - formally typeset
Search or ask a question

Showing papers by "University of Malaya published in 2011"


Journal ArticleDOI
TL;DR: In this paper, the authors used the Williamson-Hall analysis and size-strain plot method to study the individual contributions of crystallite sizes and lattice strain on the peak broadening of ZnO-NPs.

1,784 citations


Journal ArticleDOI
TL;DR: It has been found nan ofluids have a much higher and strongly temperature-dependent thermal conductivity at very low particle concentrations than conventional fluids, which can be considered as one of the key parameters for enhanced performances for many of the applications of nanofluids.
Abstract: Nanofluids are potential heat transfer fluids with enhanced thermophysical properties and heat transfer performance can be applied in many devices for better performances (i.e. energy, heat transfer and other performances). In this paper, a comprehensive literature on the applications and challenges of nanofluids have been compiled and reviewed. Latest up to date literatures on the applications and challenges in terms of PhD and Master thesis, journal articles, conference proceedings, reports and web materials have been reviewed and reported. Recent researches have indicated that substitution of conventional coolants by nanofluids appears promising. Specific application of nanofluids in engine cooling, solar water heating, cooling of electronics, cooling of transformer oil, improving diesel generator efficiency, cooling of heat exchanging devices, improving heat transfer efficiency of chillers, domestic refrigerator-freezers, cooling in machining, in nuclear reactor and defense and space have been reviewed and presented. Authors also critically analyzed some of the applications and identified research gaps for further research. Moreover, challenges and future directions of applications of nanofluids have been reviewed and presented in this paper. Based on results available in the literatures, it has been found nanofluids have a much higher and strongly temperature-dependent thermal conductivity at very low particle concentrations than conventional fluids. This can be considered as one of the key parameters for enhanced performances for many of the applications of nanofluids. Because of its superior thermal performances, latest up to date literatures on this property have been summarized and presented in this paper as well. However, few barriers and challenges that have been identified in this review must be addressed carefully before it can be fully implemented in the industrial applications.

1,558 citations


Journal ArticleDOI
TL;DR: In this paper, several aspects which are associated with burning biomass in boilers have been investigated such as composition of biomass, estimating the higher heating value of biomass and comparison between biomass and other fuels.
Abstract: Currently, fossil fuels such as oil, coal and natural gas represent the prime energy sources in the world. However, it is anticipated that these sources of energy will deplete within the next 40–50 years. Moreover, the expected environmental damages such as the global warming, acid rain and urban smog due to the production of emissions from these sources have tempted the world to try to reduce carbon emissions by 80% and shift towards utilizing a variety of renewable energy resources (RES) which are less environmentally harmful such as solar, wind, biomass etc. in a sustainable way. Biomass is one of the earliest sources of energy with very specific properties. In this review, several aspects which are associated with burning biomass in boilers have been investigated such as composition of biomass, estimating the higher heating value of biomass, comparison between biomass and other fuels, combustion of biomass, co-firing of biomass and coal, impacts of biomass, economic and social analysis of biomass, transportation of biomass, densification of biomass, problems of biomass and future of biomass. It has been found that utilizing biomass in boilers offers many economical, social and environmental benefits such as financial net saving, conservation of fossil fuel resources, job opportunities creation and CO 2 and NO x emissions reduction. However, care should be taken to other environmental impacts of biomass such as land and water resources, soil erosion, loss of biodiversity and deforestation. Fouling, marketing, low heating value, storage and collections and handling are all associated problems when burning biomass in boilers. The future of biomass in boilers depends upon the development of the markets for fossil fuels and on policy decisions regarding the biomass market.

1,293 citations


Journal ArticleDOI
TL;DR: Of the flow battery technologies that have been investigated, the all-vanadium redox flow battery has received the most attention and has shown most promise in various pre-commercial to commercial stationary applications to date, while new developments in hybrid redox fuel cells are promising to lead the way for future applications in mechanically and electrically "refuelable" electric vehicles.
Abstract: The past few decades have shown a rapid and continuous exhaustion of the available energy resources which may lead to serious energy global crises. Researchers have been focusing on developing new and renewable energy resources to meet the increasing fuel demand and reduce greenhouse gas emissions. A surge of research effort is also being directed towards replacing fossil fuel based vehicles with hybrid and electric alternatives. Energy storage is now seen as a critical element in future "smart grid and electric vehicle" applications. Electrochemical energy storage systems offer the best combination of efficiency, cost and flexibility, with redox flow battery systems currently leading the way in this aspect. In this work, a panoramic overview is presented for the various redox flow battery systems and their hybrid alternatives. Relevant published work is reported and critically discussed. A comprehensive study of the available technologies is conducted in terms of technical aspects as well as economic and environmental consequences. Some of the flow battery limitations and technical challenges are also discussed and a range of further research opportunities are presented. Of the flow battery technologies that have been investigated, the all-vanadium redox flow battery has received the most attention and has shown most promise in various pre-commercial to commercial stationary applications to date, while new developments in hybrid redox fuel cells are promising to lead the way for future applications in mechanically and electrically "refuelable" electric vehicles.

1,248 citations


Journal ArticleDOI
TL;DR: Simulation and hardware implementation of incremental conductance maximum power point tracking (MPPT) used in solar array power systems with direct control method and results indicate the feasibility and improved functionality of the system.
Abstract: This paper presents simulation and hardware implementation of incremental conductance (IncCond) maximum power point tracking (MPPT) used in solar array power systems with direct control method. The main difference of the proposed system to existing MPPT systems includes elimination of the proportional-integral control loop and investigation of the effect of simplifying the control circuit. Contributions are made in several aspects of the whole system, including converter design, system simulation, controller programming, and experimental setup. The resultant system is capable of tracking MPPs accurately and rapidly without steady-state oscillation, and also, its dynamic performance is satisfactory. The IncCond algorithm is used to track MPPs because it performs precise control under rapidly changing atmospheric conditions. MATLAB and Simulink were employed for simulation studies, and Code Composer Studio v3.1 was used to program a TMS320F2812 digital signal processor. The proposed system was developed and tested successfully on a photovoltaic solar panel in the laboratory. Experimental results indicate the feasibility and improved functionality of the system.

974 citations


Journal ArticleDOI
TL;DR: In this article, the stability of nanofluids is discussed as it has a major role in heat transfer enhancement for further possible applications, and general stabilization methods as well as various types of instruments for stability inspection.

948 citations


Journal ArticleDOI
K.H. Solangi1, M.R. Islam1, Rahman Saidur1, Nasrudin Abd Rahim1, H. Fayaz1 
TL;DR: In this article, a review about the different solar energy policies implemented on the different countries of the world is discussed and the status of solar energy policy for Malaysia is investigated and compared with that of the successful countries in the world.
Abstract: To overcome the negative impacts on the environment and other problems associated with fossil fuels have forced many countries to inquire into and change to environmental friendly alternatives that are renewable to sustain the increasing energy demand. Solar energy is one of the best renewable energy sources with least negative impacts on the environment. Different countries have formulated solar energy policies to reducing dependence on fossil fuel and increasing domestic energy production by solar energy. This paper discusses a review about the different solar energy policies implemented on the different countries of the world. According to the 2010 BP Statistical Energy Survey, the world cumulative installed solar energy capacity was 22928.9 MW in 2009, a change of 46.9% compared to 2008. Also this paper discussed the existing successful solar energy policies of few selected countries. Based on literatures, it has been found that FIT, RPS and incentives are the most beneficial energy policies implemented by many countries around the world. These policies provide significant motivation and interest for the development and use of renewable energy technologies. Also the status of solar energy policy for Malaysia is investigated and compared with that of the successful countries in the world.

902 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigate the research development in supply chain risk management (SCRM), which has shown an increasing global attention in recent years, and present a literature survey and ci...

825 citations


Journal ArticleDOI
TL;DR: In this paper, a comparative study on the world energy consumption released by International Energy Agency (IEA) shows that in 2050, solar array installations will supply around 45% of energy demand in the world.
Abstract: Presently, solar energy conversion is widely used to generate heat and produce electricity A comparative study on the world energy consumption released by International Energy Agency (IEA) shows that in 2050, solar array installations will supply around 45% of energy demand in the world It was found that solar thermal is getting remarkable popularity in industrial applications Solar thermal is an alternative to generate electricity, process chemicals or even space heating It can be used in food, non-metallic, textile, building, chemical or even business related industries On the other hand, solar electricity is wildly applied in telecommunication, agricultural, water desalination and building industry to operate lights, pumps, engines, fans, refrigerators and water heaters It is very important to apply solar energy for a wide variety of applications and provide energy solutions by modifying the energy proportion, improving energy stability, increasing energy sustainability, conversion reduction and hence enhance the system efficiency The present work aimed to study the solar energy systems utilization in industrial applications and looked into the industrial applications which are more compatible to be integrated with solar energy systems

797 citations


Journal ArticleDOI
TL;DR: Thirty five approaches for groundwater treatment have been reviewed and classified under three large categories viz chemical, biochemical/biological/biosorption and physico-chemical treatment processes for a better understanding of each category.

758 citations


Journal ArticleDOI
TL;DR: A comprehensive literature review about industrial energy saving by management, technologies and policies has been presented in this paper, where the authors have found that in the industrial sectors, a sizeable amount of electric energy, emissions and utility bill can be saved using these technologies.
Abstract: An industrial sector uses more energy than any other end-use sectors and currently this sector is consuming about 37% of the world's total delivered energy. Energy is consumed in the industrial sector by a diverse group of industries including manufacturing, agriculture, mining, and construction and for a wide range of activities, such as processing and assembly, space conditioning, and lighting. This paper presents a comprehensive literature review about industrial energy saving by management, technologies and policies. Latest literatures in terms of thesis (MS and PhD), journal articles, conference proceedings, web materials, reports, books, handbooks on industrial energy management, policies and energy savings strategies have been compiled. Energy saving by management including energy audit, training programs and housekeeping beside some energy management practices in the world has been reviewed. Energy saving technologies, such as use of high efficiency motors (HEMs), variable speed drives (VSDs), economizers, leak prevention and reducing pressure drop has been reviewed. Based on energy saving technologies results, it has been found that in the industrial sectors, a sizeable amount of electric energy, emissions and utility bill can be saved using these technologies. Payback periods for different energy savings measures have been identified and found to be economically viable in most cases. Finally, various energy-saving policies for few selected countries were reviewed.

Journal ArticleDOI
TL;DR: In this article, the power of eight selected normality tests: the Shapiro-Wilk test, Kolmogorov-Smirnov test, Lilliefors test, Cramer-von Mises test, Anderson-Darling test, D'Agostino-Pearson test, the Jarque-Bera test and chi-squared test were compared.
Abstract: Normality tests can be classified into tests based on chi-squared, moments, empirical distribution, spacings, regression and correlation and other special tests. This paper studies and compares the power of eight selected normality tests: the Shapiro–Wilk test, the Kolmogorov–Smirnov test, the Lilliefors test, the Cramer–von Mises test, the Anderson–Darling test, the D'Agostino–Pearson test, the Jarque–Bera test and chi-squared test. Power comparisons of these eight tests were obtained via the Monte Carlo simulation of sample data generated from alternative distributions that follow symmetric short-tailed, symmetric long-tailed and asymmetric distributions. Our simulation results show that for symmetric short-tailed distributions, D'Agostino and Shapiro–Wilk tests have better power. For symmetric long-tailed distributions, the power of Jarque–Bera and D'Agostino tests is quite comparable with the Shapiro–Wilk test. As for asymmetric distributions, the Shapiro–Wilk test is the most powerful test followed b...

Journal ArticleDOI
TL;DR: In this paper, a comprehensive literature in terms of Thesis (MS and PhD), peer reviewed journals papers, conference proceedings, books, reports, websites for emission generation and mitigation technique has been presented in this paper.
Abstract: The cement subsector consumes approximately 12–15% of the total industrial energy use. Therefore, this subsector releases CO2 emissions to the atmosphere as a result of burning fossil fuels to produce energy needed for the cement manufacturing process. The cement industry contributes about 7% of the total worldwide CO2 emissions. This study complied a comprehensive literature in terms of Thesis (MS and PhD), peer reviewed journals papers, conference proceedings, books, reports, websites for emission generation and mitigation technique. Emission released associated with the burning of fuels have been presented in this paper. Different sources of emissions in a cement industry has been identified and presented in this study. Different techniques to reduce CO2 emissions from the cement manufacturing industries are reviewed and presented in this paper. The major techniques are: capture and storage CO2 emissions, reducing clinker/cement ratio by replacing clinker with different of additives and using alternative fuels instead of fossil fuels. Apart from these techniques, various energy savings measures in cement industries expected to reduce indirect emissions released to the atmosphere. Based on review results it was found that sizeable amount of emission can be mitigated using different techniques and energy savings measures.

Journal ArticleDOI
TL;DR: A signaling network involving autocrine TGF-β signaling, ZEB transcription factors, and the miR-200 family regulates interconversion between epithelial and mesenchymal states.
Abstract: Epithelial-mesenchymal transition (EMT) is a form of cellular plasticity that is critical for embryonic development and tumor metastasis. A double-negative feedback loop involving the miR-200 family and ZEB (zinc finger E-box-binding homeobox) transcription factors has been postulated to control the balance between epithelial and mesenchymal states. Here we demonstrate using the epithelial Madin Darby canine kidney cell line model that, although manipulation of the ZEB/miR-200 balance is able to repeatedly switch cells between epithelial and mesenchymal states, the induction and maintenance of a stable mesenchymal phenotype requires the establishment of autocrine transforming growth factor-β (TGF-β) signaling to drive sustained ZEB expression. Furthermore, we show that prolonged autocrine TGF-β signaling induced reversible DNA methylation of the miR-200 loci with corresponding changes in miR-200 levels. Collectively, these findings demonstrate the existence of an autocrine TGF-β/ZEB/miR-200 signaling network that regulates plasticity between epithelial and mesenchymal states. We find a strong correlation between ZEBs and TGF-β and negative correlations between miR-200 and TGF-β and between miR-200 and ZEBs, in invasive ductal carcinomas, consistent with an autocrine TGF-β/ZEB/miR-200 signaling network being active in breast cancers.

Journal ArticleDOI
TL;DR: In this article, a state-of-the-art review on the energy use and savings is presented to identify energy wastage so that necessary measures could be implemented to reduce energy consumption in this sub-sector.
Abstract: The cement sub-sector consumes approximately 12–15% of total industrial energy use. Therefore, a state of art review on the energy use and savings is necessary to identify energy wastage so that necessary measures could be implemented to reduce energy consumption in this sub-sector. In this paper energy use at different sections of cement industries, specific energy consumption, types of energy use, details of cement manufacturing processes, various energy savings measures were reviewed and presented. Various energy savings measures were critically analyzed considering amount of energy that can be saved along with the implementation cost. Amount of CO2 reduction has been presented along with the payback period for different energy savings measures as well. This study complied a comprehensive literature on the cement industries in terms of Thesis (MS and PhD), peer reviewed journals papers, conference proceedings, books, reports, websites. It has been observed that China producing major share of global cement production. Coal contribute major share of fuel used in cement industries. However, along with conventional fuels, industries are moving towards the use of alternative fuels to reduce environmental pollution. It was reported that cement industries are moving from wet process to dry process as it consume less energy compared to wet process.

Journal ArticleDOI
TL;DR: The results showed that heavy metal contaminations at S2 and S3 was more severe than at other sampling sites, especially for Zn, Cu, Ni and Pb, and the element concentrations from top to bottom layers decreased predominantly.

Journal ArticleDOI
TL;DR: This review summarizes the research done during the last decade on the MAE of active ingredients from plants, together with the advantages and the drawbacks of each MAE techniques.

Journal ArticleDOI
01 Jan 2011-Energy
TL;DR: In this paper, a brief review of the coal gasification with CO2 as a diluent is presented, where coal rank, pressure, temperature, gas composition, catalyst and the minerals present inside the coal, heating rate, particle size, and diverse reactor types.

Journal ArticleDOI
TL;DR: In this article, the potential of renewable and sustain- able energy resources in the country, the government must pay more attention on how to utilize it and the public should take a more proactive step to promote and use renewable energy in order to achieve the secure and environmentally sustainable energy resources.
Abstract: a b s t r a c t The global energy consumption is likely to grow faster than the population growth. The fuel consumption was growing from 6630 million tons of oil equivalents (Mtoe) in 1980 to 11,163 Mtoe in 2009. This pro- jected consumption will increase 1.5% per year until 2030 and reach 16,900 Mtoe and the main drivers of this growth are mostly developing countries in Asia. Indonesia is one of the developing countries and energy supply is an important factor for all-around development. The country's energy consumption still depends on non-renewable energy such as crude oil, coal and natural gas as sources of energy. Utiliza- tion of fossil fuel continuously contributes to huge amount of greenhouse gases emission that leads to climate change. Facing such an unfavorable situation, the government of Indonesia prioritizes on energy supply securities by diversification of energy resources. The energy mixes in Indonesia based on five main resources; these are crude oil, natural gas, coal, hydropower, and renewable energy. Although the country encourages utilizing renewable energy, the contribution is only around 3%. Considering natural condition and geography, this country is blessed with great potential of renewable energy such as solar energy, wind energy, micro hydro and biomass energy. Noting the potential of renewable and sustain- able energy resources in the country, the government must pay more attention on how to utilize it. Many efforts have been done to promote renewable energy such as to create energy policy and regulations, yet it still did not give any satisfactory result. Government, non-government agencies and the public should take a more proactive step to promote and use renewable energy in order to achieve the secure and environmentally sustainable energy resources.

Journal ArticleDOI
TL;DR: This review summarizes studies on the epidemiology and public health implications of Helicobacter pylori published in peer‐reviewed journals from April 2010 through March 2011.
Abstract: This review summarizes studies on the epidemiology and public health implications of Helicobacter pylori published in peer-reviewed journals from April 2010 through March 2011. Prevalence rates vary widely between different geographical regions and ethnic groups. An interesting study from the USA identified the degree of African ancestry as an independent predictor of H. pylori infection. Two studies have demonstrated early childhood as the period of transmission of infection and identified an infected sibling as an important risk factor. An oral–oral route of spread has been substantiated with several studies showing the presence of H. pylori in the oral cavity. Studies have shown the presence of H. pylori in drinking water and the role of poor living conditions and sanitation in H. pylori infection, supporting an oral–fecal route of spread. Screening for H. pylori as a gastric cancer pre-screening strategy has been described in Japan, and the importance of H. pylori eradication as a gastric cancer–prevention strategy has now been further emphasized in Japanese guidelines. Two studies have shown a decrease in the burden of dyspepsia and peptic ulcer disease with H. pylori eradication.

Journal ArticleDOI
TL;DR: In this article, both conventional and most recent membrane technologies used in refining biodiesel have been critically reviewed, and the effects of catalysts, free fatty acids, water content and oil to methanol ratios on the purity and quality of biodiesel are also examined.

Journal ArticleDOI
TL;DR: In this article, the current state and prospects of biomass utilization and strategies promoted for future developments in Malaysia are presented, where the concept of waste-to-wealth had been promoted and became popular widely.
Abstract: Today, energy crisis turn out to be a serious threat towards sustainability for developing countries since their energy demand is growing more rapidly than developed countries. On the other hand, fossil fuels cannot sustain anymore in the near future because of environmental impacts and depletion of the reserves. Malaysia is experiencing drastic growth in population and economy and requires exploring alternative energy sources to support its population and commercial energy demand. Biomass as the fourth largest energy resource in the world is abundant in the country. Malaysia is blessed with tropical and humid climate all year round which is a magnificent opportunity for fully exploiting agriculture and tropical forests potential. Since late 1990, the concept of waste-to-wealth had been promoted and became popular widely. This concept is based on unwanted wastes which are converted into valuable energy while reducing waste generated and increase the economy-efficiency mainly used for cooking, space heating and power generation. Currently, concerted efforts and various biomass energy programs are supporting by the government for development, demonstration and commercialization. This paper intent to present the current state and prospects of biomass utilization and strategies promoted for future developments in Malaysia.

Journal ArticleDOI
TL;DR: In this article, the authors have collected and analyzed the data on both advantages and disadvantages of biodiesel over conventional diesel, and the highest consensus is related to enhanced corrosion of automotive parts due to its compositional differences.
Abstract: Biodiesel, derived from the transesterification of vegetable oils or animal fats, is composed of saturated and unsaturated long-chain fatty acid alkyl esters. In spite of having some application problems, recently it is being considered as one of the most promising alternative fuels in internal combustion engine. From scientific literatures, this paper has collected and analyzed the data on both advantages and disadvantages of biodiesel over conventional diesel. Since the aim of this study is to evaluate the biodiesel feasibility in automobiles, the first section is dedicated to materials compatibility in biodiesel as compared to that in diesel. The highest consensus is related to enhanced corrosion of automotive parts due to its compositional differences. In the subsequent sections, data on performance, emission and engine durability have been analyzed and compared. In this case, the highest consensus is found in reducing emissions as well as in increasing moving parts sticking, injector coking and filter plugging. This paper has also summarized the factors of biodiesel in contributing these technical performances.

Journal ArticleDOI
TL;DR: In this article, the impact of wind energy on the environment has been investigated and the negative perception of wind power is increasingly evident that may prevent the installation of the wind energy in some countries.
Abstract: Since the beginning of industrialization, energy consumption has increased far more rapidly than the number of people on the planet. It is known that the consumption of energy is amazingly high and the fossil based resources may not be able to provide energy for the whole world as these resources will be used up in the near future. Hence, renewable energy expected to play an important role in handling the demand of the energy required along with environmental pollution prevention. The impacts of the wind energy on the environment are important to be studied before any wind firm construction or a decision is made. Although many countries showing great interest towards renewable or green energy generation, negative perception of wind energy is increasingly evident that may prevent the installation of the wind energy in some countries. This paper compiled latest literatures in terms of thesis (MS and PhD), journal articles, conference proceedings, reports, books, and web materials about the environmental impacts of wind energy. This paper also includes the comparative study of wind energy, problems, solutions and suggestion as a result of the implementation of wind turbine. Positive and negative impacts of wind energy have been broadly explained as well. It has been found that this source of energy will reduce environmental pollution and water consumption. However, it has noise pollution, visual interference and negative impacts on wildlife.

Journal ArticleDOI
TL;DR: A brief overview of different technologies used for the treatment of petroleum refinery effluents (PRE) can be found in this paper, where the authors present an overview of photocatalytic degradation and discusses published works.

Journal ArticleDOI
TL;DR: This paper proposes a single-phase seven-level inverter for grid-connected photovoltaic systems, with a novel pulsewidth-modulated (PWM) control scheme, which was verified through simulation and implemented in a prototype.
Abstract: This paper proposes a single-phase seven-level inverter for grid-connected photovoltaic systems, with a novel pulsewidth-modulated (PWM) control scheme. Three reference signals that are identical to each other with an offset that is equivalent to the amplitude of the triangular carrier signal were used to generate the PWM signals. The inverter is capable of producing seven levels of output-voltage levels (Vdc, 2Vdc/3, Vdc/3, 0, -Vdc, -2Vdc/3, -Vdc/3) from the dc supply voltage. A digital proportional-integral current-control algorithm was implemented in a TMS320F2812 DSP to keep the current injected into the grid sinusoidal. The proposed system was verified through simulation and implemented in a prototype.

Journal ArticleDOI
TL;DR: In this article, plate-shaped zinc oxide nanoparticles (ZnO-NPs) were successfully synthesized by a modified sol-gel combustion method, where zinc acetate, pure water and isopropanol were used as the starting materials.

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the production, performance and emission of palm oil, Jatropha curcas and Calophyllum inophyllus biodiesel, and concluded that the main advantages of using biodiesel are its renewability and better quality of exhaust gas emissions.
Abstract: The world today is faced with serious global warming and environmental pollution. Besides, fossil fuel will become rare and faces serious shortage in the near future. This has triggered the awareness to find alternative energy as their sustainable energy sources. Biodiesel as a cleaner renewable fuel has been considered as the best substitution for diesel fuel due to it being used in any compression ignition engine without any modification. The main advantages of using biodiesel are its renewability and better quality of exhaust gas emissions. This paper reviews the production, performance and emission of palm oil, Jatropha curcas and Calophyllum inophyllum biodiesel. Palm oil is one of the most efficient oil bearing crops in terms of oil yield, land utilization, efficiency and productivity. However, competition between edible oil sources as food with fuel makes edible oil not an ideal feedstock for biodiesel production. Therefore, attention is shifted to non-edible oil like Jatropha curcas and Calophyllum inophyllum. Calophyllum inophyllum oil can be transesterified and being considered as a potential biodiesel fuel. Compared to Palm oil and Jatropha biodiesel industry, biodiesel from Calophyllum inophyllum is still in a nascent state. Therefore, long term endurance research and tribological studies need to be carried out before Calophyllum inophyllum oil base biodiesel can become an alternative fuel in future.

Journal ArticleDOI
TL;DR: The results confirm that TEA is a suitable polymer agent to prepare homogenous ZnO-NPs.
Abstract: Zinc oxide nanoparticles (ZnO-NPs) were synthesized via a solvothermal method in triethanolamine (TEA) media. TEA was utilized as a polymer agent to terminate the growth of ZnO-NPs. The ZnO-NPs were characterized by a number of techniques, including X-ray diffraction analysis, transition electron microscopy, and field emission electron microscopy. The ZnO-NPs prepared by the solvothermal process at 150°C for 18 hours exhibited a hexagonal (wurtzite) structure, with a crystalline size of 33 ± 2 nm, and particle size of 48 ± 7 nm. The results confirm that TEA is a suitable polymer agent to prepare homogenous ZnO-NPs.

Journal ArticleDOI
TL;DR: The simplified Hummer’s method provides a facile approach for the preparation of large-area graphene oxide (GO), resulting in GO with large lateral dimension and area, which could reach up to 120 μm and ~8000 μm2, respectively.
Abstract: Graphene has attracted much attention from researchers due to its interesting mechanical, electrochemical, and electronic properties. It has many potential applications such as polymer filler, sensor, energy conversion, and energy storage devices. Graphene-based nanocomposites are under an intense spotlight amongst researchers. A large amount of graphene is required for preparation of such samples. Lately, graphene-based materials have been the target for fundamental life science investigations. Despite graphene being a much sought-after raw material, the drawbacks in the preparation of graphene are that it is a challenge amongst researchers to produce this material in a scalable quantity and that there is a concern about its safety. Thus, a simple and efficient method for the preparation of graphene oxide (GO) is greatly desired to address these problems. In this work, one-pot chemical oxidation of graphite was carried out at room temperature for the preparation of large-area GO with ∼100% conversion. This high-conversion preparation of large-area GO was achieved using a simplified Hummer's method from large graphite flakes (an average flake size of 500 µm). It was found that a high degree of oxidation of graphite could be realized by stirring graphite in a mixture of acids and potassium permanganate, resulting in GO with large lateral dimension and area, which could reach up to 120 µm and ∼8000 µm 2 , respectively. The simplified Hummer's method provides a