scispace - formally typeset
Search or ask a question
Institution

University of Marburg

EducationMarburg, Germany
About: University of Marburg is a education organization based out in Marburg, Germany. It is known for research contribution in the topics: Population & Gene. The organization has 23195 authors who have published 42907 publications receiving 1506069 citations. The organization is also known as: Philipps University of Marburg & Philipps-Universität.
Topics: Population, Gene, Crystal structure, Laser, Catalysis


Papers
More filters
Journal ArticleDOI
TL;DR: The aim of this review is to clarify and give an unifying view of the complex interplay between the NP's surface with their nanoenvironment, which has not been addressed in a comprehensive way in the literature.
Abstract: The physico-chemical properties of colloidal nanoparticles (NPs) are influenced by their local environment, as, in turn, the local environment influences the physico-chemical properties of the NPs. In other words, the local environment around NPs has a profound impact on the NPs, and it is different from bulk due to interaction with the NP surface. So far, this important effect has not been addressed in a comprehensive way in the literature. The vicinity of NPs can be sensitively influenced by local ions and ligands, with effects already occurring at extremely low concentrations. NPs in the Huckel regime are more sensitive to fluctuations in the ionic environment, because of a larger Debye length. The local ion concentration hereby affects the colloidal stability of the NPs, as it is different from bulk owing to Debye Huckel screening caused by the charge of the NPs. This can have subtle effects, now caused by the environment to the performance of the NP, such as for example a buffering effect caused by surface reaction on ultrapure ligand-free nanogold, a size quenching effect in the presence of specific ions and a significant impact on fluorophore-labelled NPs acting as ion sensors. Thus, the aim of this review is to clarify and give an unifying view of the complex interplay between the NP's surface with their nanoenvironment.

310 citations

Journal ArticleDOI
TL;DR: Physicians in charge of older patients should be aware that malnutrition, dehydration, and pneumonia are frequently caused by (unrecognized) dysphagia, and the diagnosis is particularly difficult in the case of silent aspiration.
Abstract: Oropharyngeal dysphagia (OD) is a highly prevalent and growing condition in the older population. Although OD may cause very severe complications, it is often not detected, explored, and treated. Older patients are frequently unaware of their swallowing dysfunction which is one of the reasons why the consequences of OD, ie, aspiration, dehydration, and malnutrition, are regularly not attributed to dysphagia. Older patients are particularly vulnerable to dysphagia because multiple age-related changes increase the risk of dysphagia. Physicians in charge of older patients should be aware that malnutrition, dehydration, and pneumonia are frequently caused by (unrecognized) dysphagia. The diagnosis is particularly difficult in the case of silent aspiration. In addition to numerous screening tools, videofluoroscopy was the traditional gold standard of diagnosing OD. Recently, the fiberoptic endoscopic evaluation of swallowing is increasingly utilized because it has several advantages. Besides making a diagnosis, fiberoptic endoscopic evaluation of swallowing is applied to evaluate the effectiveness of therapeutic maneuvers and texture modification of food and liquids. In addition to swallowing training and nutritional interventions, newer rehabilitation approaches of stimulation techniques are showing promise and may significantly impact future treatment strategies.

310 citations

Journal ArticleDOI
01 Aug 2008-Science
TL;DR: The crystal structure of the 144-kilodalton Bacillus subtilis termination module SrfA-C was solved and has implications for the rational redesign of NRPSs as a means of producing novel bioactive peptides.
Abstract: Nonribosomal peptide synthetases (NRPSs) are modular multidomain enzymes that act as an assembly line to catalyze the biosynthesis of complex natural products. The crystal structure of the 144-kilodalton Bacillus subtilis termination module SrfA-C was solved at 2.6 angstrom resolution. The adenylation and condensation domains of SrfA-C associate closely to form a catalytic platform, with their active sites on the same side of the platform. The peptidyl carrier protein domain is flexibly tethered to this platform and thus can move with its substrate-loaded 4'-phosphopantetheine arm between the active site of the adenylation domain and the donor side of the condensation domain. The SrfA-C crystal structure has implications for the rational redesign of NRPSs as a means of producing novel bioactive peptides.

309 citations

Journal ArticleDOI
TL;DR: To functionally link the dhb gene cluster to siderophore synthesis, thedhbF gene is disrupted and a mass peak at m/z 881 ([M-H]1−) that corresponds to a cyclic trimeric ester of DHB-glycine-threonine is identified.

309 citations

Journal ArticleDOI
TL;DR: The results indicate that the N200 primarily reflects conflict-related effects whereas the P300 predominantly represents motor inhibition.

309 citations


Authors

Showing all 23488 results

NameH-indexPapersCitations
John C. Morris1831441168413
Russel J. Reiter1691646121010
Martin J. Blaser147820104104
Christopher T. Walsh13981974314
Markus Cristinziani131114084538
James C. Paulson12644352152
Markus F. Neurath12493462376
Nicholas W. Wood12361466270
Florian Lang116142166496
Howard I. Maibach116182160765
Thomas G. Ksiazek11339846108
Frank Glorius11366349305
Eberhard Ritz111110961530
Manfred T. Reetz11095942941
Wolfgang H. Oertel11065351147
Network Information
Related Institutions (5)
Ludwig Maximilian University of Munich
161.5K papers, 5.7M citations

97% related

Heidelberg University
119.1K papers, 4.6M citations

95% related

Technische Universität München
123.4K papers, 4M citations

94% related

University of Zurich
124K papers, 5.3M citations

94% related

Radboud University Nijmegen
83K papers, 3.2M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023142
2022412
20212,104
20201,918
20191,749
20181,592