scispace - formally typeset
Search or ask a question
Institution

University of Marburg

EducationMarburg, Germany
About: University of Marburg is a education organization based out in Marburg, Germany. It is known for research contribution in the topics: Population & Gene. The organization has 23195 authors who have published 42907 publications receiving 1506069 citations. The organization is also known as: Philipps University of Marburg & Philipps-Universität.
Topics: Population, Gene, Crystal structure, Laser, Catalysis


Papers
More filters
Journal ArticleDOI
TL;DR: An essential cellular factor for nuclear mRNA export called Mex67p which has homologous proteins in human and Caenorhabditis elegans was identified through its genetic interaction with nucleoporin Nup85p, and is likely to participate directly in the export of mRNA from the nucleus to the cytoplasm.
Abstract: An essential cellular factor for nuclear mRNA export called Mex67p which has homologous proteins in human and Caenorhabditis elegans was identified through its genetic interaction with nucleoporin Nup85p. In the thermosensitive mex67-5 mutant, poly(A)+ RNA accumulates in intranuclear foci shortly after shift to the restrictive temperature, but NLS-mediated nuclear protein import is not inhibited. In vivo, Mex67p tagged with green fluorescent protein (GFP) is found at the nuclear pores, but mutant mex67-5-GFP accumulates in the cytoplasm. Upon purification of poly(A)+ RNA derived from of UV-irradiated yeast cells, Mex67p, but not nucleoporins Nup85p and Nup57p, was crosslinked to mRNA. In a two-hybrid screen, a putative RNA-binding protein with RNP consensus motifs was found to interact with the Mex67p carboxy-terminal domain. Thus, Mex67p is likely to participate directly in the export of mRNA from the nucleus to the cytoplasm.

521 citations

Journal ArticleDOI
TL;DR: Three strategies that could be used to modulate the placebo response, depending on which stage of the drug development process they are applied are discussed.
Abstract: The therapeutic outcome of a drug or procedure is influenced by the placebo response in both drug development and clinical practice. Enck and colleagues examine how the placebo response can be utilized in these settings to ensure that the most desirable outcome is attained. Our understanding of the mechanisms mediating or moderating the placebo response to medicines has grown substantially over the past decade and offers the opportunity to capitalize on its benefits in future drug development as well as in clinical practice. In this article, we discuss three strategies that could be used to modulate the placebo response, depending on which stage of the drug development process they are applied. In clinical trials the placebo effect should be minimized to optimize drug–placebo differences, thus ensuring that the efficacy of the investigational drug can be truly evaluated. Once the drug is approved and in clinical use, placebo effects should be maximized by harnessing patients' expectations and learning mechanisms to improve treatment outcomes. Finally, personalizing placebo responses — which involves considering an individual's genetic predisposition, personality, past medical history and treatment experience — could also maximize therapeutic outcomes.

518 citations

Journal ArticleDOI
TL;DR: The main constraints for a successfully integrated conservation management presently consist of a limited availability and exchange of information, and an insufficient organisation of research and management at an international level.

515 citations

Journal ArticleDOI
TL;DR: In this article, the authors quantified, across four countries of contrasting climatic and soil conditions in Europe, how differences in soil food web composition resulting from land use systems (intensive wheat rotation, extensive rotation, and permanent grassland) influence the functioning of soils and the ecosystem services that they deliver.
Abstract: Intensive land use reduces the diversity and abundance of many soil biota, with consequences for the processes that they govern and the ecosystem services that these processes underpin. Relationships between soil biota and ecosystem processes have mostly been found in laboratory experiments and rarely are found in the field. Here, we quantified, across four countries of contrasting climatic and soil conditions in Europe, how differences in soil food web composition resulting from land use systems (intensive wheat rotation, extensive rotation, and permanent grassland) influence the functioning of soils and the ecosystem services that they deliver. Intensive wheat rotation consistently reduced the biomass of all components of the soil food web across all countries. Soil food web properties strongly and consistently predicted processes of C and N cycling across land use systems and geographic locations, and they were a better predictor of these processes than land use. Processes of carbon loss increased with soil food web properties that correlated with soil C content, such as earthworm biomass and fungal/bacterial energy channel ratio, and were greatest in permanent grassland. In contrast, processes of N cycling were explained by soil food web properties independent of land use, such as arbuscular mycorrhizal fungi and bacterial channel biomass. Our quantification of the contribution of soil organisms to processes of C and N cycling across land use systems and geographic locations shows that soil biota need to be included in C and N cycling models and highlights the need to map and conserve soil biodiversity across the world.

514 citations


Authors

Showing all 23488 results

NameH-indexPapersCitations
John C. Morris1831441168413
Russel J. Reiter1691646121010
Martin J. Blaser147820104104
Christopher T. Walsh13981974314
Markus Cristinziani131114084538
James C. Paulson12644352152
Markus F. Neurath12493462376
Nicholas W. Wood12361466270
Florian Lang116142166496
Howard I. Maibach116182160765
Thomas G. Ksiazek11339846108
Frank Glorius11366349305
Eberhard Ritz111110961530
Manfred T. Reetz11095942941
Wolfgang H. Oertel11065351147
Network Information
Related Institutions (5)
Ludwig Maximilian University of Munich
161.5K papers, 5.7M citations

97% related

Heidelberg University
119.1K papers, 4.6M citations

95% related

Technische Universität München
123.4K papers, 4M citations

94% related

University of Zurich
124K papers, 5.3M citations

94% related

Radboud University Nijmegen
83K papers, 3.2M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023142
2022412
20212,104
20201,918
20191,749
20181,592