scispace - formally typeset
Search or ask a question
Institution

University of Maribor

EducationMaribor, Slovenia
About: University of Maribor is a education organization based out in Maribor, Slovenia. It is known for research contribution in the topics: Population & KEKB. The organization has 3987 authors who have published 13077 publications receiving 258339 citations. The organization is also known as: Univerza v Mariboru.


Papers
More filters
Journal ArticleDOI
TL;DR: The essentials of aquaporin protein function are summarized, the latest progress in this fascinating area of membrane research and development is reviewed and two main approaches have been suggested based on planar membranes and vesicles respectively.

143 citations

Journal ArticleDOI
TL;DR: This paper presents a new chain code based on the eight-direction Freeman code, which requires 1.97bits/code, its chain length is short, it allows the representation of non-closed patterns, and it is rotationally independent.

143 citations

Journal ArticleDOI
TL;DR: It is shown that an intermediate intensity of temporally and spatially uncorrelated noise is able to optimally assist the pacemaker in achieving this goal, thus providing evidence for stochastic resonance on weakly paced scale-free networks.
Abstract: We study the impact of additive Gaussian noise and weak periodic forcing on the dynamics of a scale-free network of bistable overdamped oscillators. The periodic forcing is introduced to a single oscillator and therefore acts as a pacemaker trying to impose its rhythm on the whole ensemble. We show that an intermediate intensity of temporally and spatially uncorrelated noise is able to optimally assist the pacemaker in achieving this goal, thus providing evidence for stochastic resonance on weakly paced scale-free networks. Because of the inherent degree inhomogeneity of individual oscillators forming the scale-free network, the placement of the pacemaker within the network is thereby crucial. As two extremes, we consider separately the introduction of the pacemaker to the oscillator with the highest degree and to one of the oscillators having the lowest degree. In both cases the coupling strength plays a crucial role, since it determines to what extent the whole network will follow the pacemaker on the expense of a weaker correlation between the pacemaker and the units that are directly linked with the paced oscillator. Higher coupling strengths facilitate the global outreach of the pacemaker, but require higher noise intensities for the optimal response. In contrast, lower coupling strengths and comparatively low noise intensities localize the optimal response to immediate neighbors of the paced oscillator. If the pacemaker is introduced to the main hub, the transition between the locally and globally optimal responses is characterized by a double resonance that postulates the existence of an optimal coupling strength for the transmission of weak rhythmic activity across scale-free networks. We corroborate the importance of the inhomogeneous structure of scale-free networks by additionally considering regular networks of oscillators with different degrees of coupling.

142 citations

Journal ArticleDOI
R. Glattauer1, C. Schwanda1, A. Abdesselam2, I. Adachi  +177 moreInstitutions (58)
TL;DR: In this article, the magnitude of the Cabibbo-Kobayashi-Maskawa matrix element vertical bar V-cb vertical bar was determined based on 711 fb(-1) of e(+)e(-) -> Upsilon(4S) data recorded by the Belle detector and containing 772 x 10(6) B (B) over bar pairs.
Abstract: We present a determination of the magnitude of the Cabibbo-Kobayashi-Maskawa matrix element vertical bar V-cb vertical bar using the decay B -> Dl nu(l) (l = e,mu) based on 711 fb(-1) of e(+)e(-) -> Upsilon(4S) data recorded by the Belle detector and containing 772 x 10(6) B (B) over bar pairs. One B meson in the event is fully reconstructed in a hadronic decay mode, while the other, on the signal side, is partially reconstructed from a charged lepton and either a D+ or D-0 meson in a total of 23 hadronic decay modes. The isospin-averaged branching fraction of the decay B -> Dl nu(l) is found to be B(B-0 -> D(-)l(vertical bar)nu(l)) = (2.31 +/- 0.03(stat) +/- 0.11(syst))%. Analyzing the differential decay rate as a function of the hadronic recoil with the parametrization of Caprini, Lellouch, and Neubert and using the form-factor prediction G(1) = 1.0541 +/- 0.0083 calculated by FNAL/MILC, we obtain eta(EW)vertical bar V-cb vertical bar = (40.12 +/- 1.34) x 10(-3), where eta(EW) is the electroweak correction factor. Alternatively, assuming the model-independent form-factor parametrization of Boyd, Grinstein, and Lebed and using lattice QCD data from the FNAL/MILC and HPQCD collaborations, we find eta(EW)vertical bar V-cb vertical bar = (41.10 +/- 1.14) x 10(-3).

142 citations

Journal ArticleDOI
TL;DR: In this paper, the authors aim to determine the level of job satisfaction of nursing professionals in Slovenian hospitals and factors influencing job satisfaction in nursing, using a survey conducted in Slovenia.
Abstract: Aim To determine the level of job satisfaction of nursing professionals in Slovenian hospitals and factors influencing job satisfaction in nursing.

142 citations


Authors

Showing all 4077 results

NameH-indexPapersCitations
Ignacio E. Grossmann11277646185
Mirjam Cvetič8945627867
T. Sumiyoshi8885562277
M. Bračko8773830195
Xin-She Yang8544461136
Matjaž Perc8440022115
Baowen Li8347723080
S. Nishida8267827709
P. Križan7874926408
S. Korpar7861523802
Attila Szolnoki7623120423
H. Kawai7647722713
John Shawe-Taylor7250352369
Matjaz Perc5714812886
Mitja Lainscak5528722004
Network Information
Related Institutions (5)
Vienna University of Technology
49.3K papers, 1.3M citations

88% related

Royal Institute of Technology
68.4K papers, 1.9M citations

88% related

Eindhoven University of Technology
52.9K papers, 1.5M citations

88% related

Polytechnic University of Milan
58.4K papers, 1.2M citations

88% related

Hong Kong Polytechnic University
72.1K papers, 1.9M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202352
2022135
2021809
2020870
2019832
2018756