scispace - formally typeset
Search or ask a question
Institution

University of Maryland, Baltimore County

EducationBaltimore, Maryland, United States
About: University of Maryland, Baltimore County is a education organization based out in Baltimore, Maryland, United States. It is known for research contribution in the topics: Population & Galaxy. The organization has 8749 authors who have published 20843 publications receiving 795706 citations. The organization is also known as: UMBC.


Papers
More filters
Journal ArticleDOI
24 Jan 2007
TL;DR: The results indicate that common contextual variations can lead to dramatic changes in behavior and that interactions between contextual factors are also important to consider.
Abstract: Many real world mobile device interactions occur in context-rich environments. However, the majority of empirical studies on mobile computing are conducted in static or idealized conditions, resulting in a deficit of understanding of how changes in context impact users’ abilities to perform effectively. This paper attempts to address the disconnect between the actual use and the evaluation of mobile devices by varying contextual conditions and recording changes in behavior. A study was performed to investigate the specific effects of changes in motion, lighting, and task type on user performance and workload. The results indicate that common contextual variations can lead to dramatic changes in behavior and that interactions between contextual factors are also important to consider.

191 citations

Journal ArticleDOI
A. A. Abdo1, A. A. Abdo2, Markus Ackermann3, Marco Ajello3  +215 moreInstitutions (36)
TL;DR: In this paper, the gamma-ray observations with the LAT on board the Fermi Gamma-Ray Telescope of the nearby radio galaxy Centaurus~A were used for the detection of the lobes by the LAT; the LAT core spectrum, extrapolated to higher energies, is marginally consistent with the non-simultaneous HESS spectrum of the source.
Abstract: We present gamma-ray observations with the LAT on board the Fermi Gamma-Ray Telescope of the nearby radio galaxy Centaurus~A. The previous EGRET detection is confirmed, and the localization is improved using data from the first 10 months of Fermi science operation. In previous work, we presented the detection of the lobes by the LAT; in this work, we concentrate on the gamma-ray core of Cen~A. Flux levels as seen by the LAT are not significantly different from that found by EGRET, nor is the extremely soft LAT spectrum ($\G=2.67\pm0.10_{stat}\pm0.08_{sys}$ where the photon flux is $\Phi\propto E^{-\G}$). The LAT core spectrum, extrapolated to higher energies, is marginally consistent with the non-simultaneous HESS spectrum of the source. The LAT observations are complemented by simultaneous observations from Suzaku, the Swift Burst Alert Telescope and X-ray Telescope, and radio observations with the Tracking Active Galactic Nuclei with Austral Milliarcsecond Interferometry (TANAMI) program, along with a variety of non-simultaneous archival data from a variety of instruments and wavelengths to produce a spectral energy distribution (SED). We fit this broadband data set with a single-zone synchrotron/synchrotron self-Compton model, which describes the radio through GeV emission well, but fails to account for the non-simultaneous higher energy TeV emission observed by HESS from 2004-2008. The fit requires a low Doppler factor, in contrast to BL Lacs which generally require larger values to fit their broadband SEDs. This indicates the $\g$-ray emission originates from a slower region than that from BL Lacs, consistent with previous modeling results from Cen~A. This slower region could be a slower moving layer around a fast spine, or a slower region farther out from the black hole in a decelerating flow.

191 citations

Journal ArticleDOI
TL;DR: In this article, the authors derived zenith delay models from revised equations for the computation of the refractive index of the atmosphere, valid for a wide spectrum of optical wavelengths.
Abstract: [1] A major limitation in accuracy in modern satellite laser ranging is the modeling of atmospheric refraction. Recent improvements in this area include the development of mapping functions to project the atmospheric delay experienced in the zenith direction to a given elevation angle. In this paper, we derive zenith delay models from revised equations for the computation of the refractive index of the atmosphere, valid for a wide spectrum of optical wavelengths. The zenith total delay predicted with these models were tested against ray tracing through radiosonde data from a full year of data, for 180 stations distributed worldwide, and showed sub-millimeter accuracy for wavelengths ranging from 0.355 μm to 1.064 μm.

191 citations

Journal ArticleDOI
TL;DR: The anchored plasticity approach, which anchor an inhibitor core in a conserved binding pocket, then extend rigid bulky substituents towards remote specificity pockets, accessible upon conformational changes of flexible residues, exemplifies general principles for the design of selective enzyme inhibitors that overcome strong active-site conservation.
Abstract: Nitric oxide synthase (NOS) enzymes synthesize nitric oxide, a signal for vasodilatation and neurotransmission at low concentrations and a defensive cytotoxin at higher concentrations. The high active site conservation among all three NOS isozymes hinders the design of selective NOS inhibitors to treat inflammation, arthritis, stroke, septic shock and cancer. Our crystal structures and mutagenesis results identified an isozyme-specific induced-fit binding mode linking a cascade of conformational changes to a new specificity pocket. Plasticity of an isozyme-specific triad of distant second- and third-shell residues modulates conformational changes of invariant first-shell residues to determine inhibitor selectivity. To design potent and selective NOS inhibitors, we developed the anchored plasticity approach: anchor an inhibitor core in a conserved binding pocket, then extend rigid bulky substituents toward remote specificity pockets, which become accessible upon conformational changes of flexible residues. This approach exemplifies general principles for the design of selective enzyme inhibitors that overcome strong active site conservation.

191 citations

Journal ArticleDOI
TL;DR: In this article, Chandra, XMM-Newton and Suzaku data for local type 1 active galactic nuclei (AGN) X-ray spectra have been studied.
Abstract: X-ray spectroscopy offers an opportunity to study the complex mixture of emitting and absorbing components in the circumnuclear regions of active galactic nuclei (AGN), and to learn about the accretion process that fuels AGN and the feedback of material to their host galaxies. We describe the spectral signatures that may be studied and review the X-ray spectra and spectral variability of active galaxies, concentrating on progress from recent Chandra, XMM-Newton and Suzaku data for local type 1 AGN. We describe the evidence for absorption covering a wide range of column densities, ionization and dynamics, and discuss the growing evidence for partial-covering absorption from data at energies ≳ 10 keV. Such absorption can also explain the observed X-ray spectral curvature and variability in AGN at lower energies and is likely an important factor in shaping the observed properties of this class of source. Consideration of self-consistent models for local AGN indicates that X-ray spectra likely comprise a combination of absorption and reflection effects from material originating within a few light days of the black hole as well as on larger scales. It is likely that AGN X-ray spectra may be strongly affected by the presence of disk-wind outflows that are expected in systems with high accretion rates, and we describe models that attempt to predict the effects of radiative transfer through such winds, and discuss the prospects for new data to test and address these ideas.

191 citations


Authors

Showing all 8862 results

NameH-indexPapersCitations
Robert C. Gallo14582568212
Paul T. Costa13340688454
Igor V. Moskalenko13254258182
James Chiang12930860268
Alex K.-Y. Jen12892161811
Alan R. Shuldiner12055771737
Richard N. Zare120120167880
Vince D. Calhoun117123462205
Rita R. Colwell11578155229
Kendall N. Houk11299754877
Elliot K. Fishman112133549298
Yoram J. Kaufman11126359238
Paulo Artaxo10745444346
Braxton D. Mitchell10255849599
Sushil Jajodia10166435556
Network Information
Related Institutions (5)
Pennsylvania State University
196.8K papers, 8.3M citations

94% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

94% related

University of Washington
305.5K papers, 17.7M citations

93% related

University of California, San Diego
204.5K papers, 12.3M citations

93% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202371
2022165
20211,065
20201,091
2019989
2018929