scispace - formally typeset
Search or ask a question
Institution

University of Maryland, Baltimore County

EducationBaltimore, Maryland, United States
About: University of Maryland, Baltimore County is a education organization based out in Baltimore, Maryland, United States. It is known for research contribution in the topics: Population & Galaxy. The organization has 8749 authors who have published 20843 publications receiving 795706 citations. The organization is also known as: UMBC.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors review and discuss the literature concerning the measurement of smoke particle size, chemistry, thermodynamic properties, and emission factors, and show that very large differences in measured particle properties have appeared in the literature, in particular with regards to particle carbon budgets.
Abstract: . The last decade has seen tremendous advances in atmospheric aerosol particle research that is often performed in the context of climate and global change science. Biomass burning, one of the largest sources of accumulation mode particles globally, has been closely studied for its radiative, geochemical, and dynamic impacts. These studies have taken many forms including laboratory burns, in situ experiments, remote sensing, and modeling. While the differing perspectives of these studies have ultimately improved our qualitative understanding of biomass-burning issues, the varied nature of the work make inter-comparisons and resolutions of some specific issues difficult. In short, the literature base has become a milieu of small pieces of the biomass-burning puzzle. This manuscript, the second part of four, examines the properties of biomass-burning particle emissions. Here we review and discuss the literature concerning the measurement of smoke particle size, chemistry, thermodynamic properties, and emission factors. Where appropriate, critiques of measurement techniques are presented. We show that very large differences in measured particle properties have appeared in the literature, in particular with regards to particle carbon budgets. We investigate emissions uncertainties using scale analyses, which shows that while emission factors for grass and brush are relatively well known, very large uncertainties still exist in emission factors of boreal, temperate and some tropical forests. Based on an uncertainty analysis of the community data set of biomass burning measurements, we present simplified models for particle size and emission factors. We close this review paper with a discussion of the community experimental data, point to lapses in the data set, and prioritize future research topics.

1,344 citations

Journal ArticleDOI
TL;DR: The Georgia Institute of Technology's Goddardard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model is used to simulate the aerosol optical thickness t for major types of tropospheric aerosols including sulfate, dust, organic carbon (OC), black carbon (BC), and sea salt.
Abstract: The Georgia Institute of Technology‐Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model is used to simulate the aerosol optical thickness t for major types of tropospheric aerosols including sulfate, dust, organic carbon (OC), black carbon (BC), and sea salt The GOCART model uses a dust emission algorithm that quantifies the dust source as a function of the degree of topographic depression, and a biomass burning emission source that includes seasonal and interannual variability based on satellite observations Results presented here show that on global average, dust aerosol has the highest t at 500 nm (0051), followed by sulfate (0040), sea salt (0027), OC (0017), and BC (0007) There are large geographical and seasonal variations of t, controlled mainly by emission, transport, and hygroscopic properties of aerosols The model calculated total ts at 500 nm have been compared with the satellite retrieval products from the Total Ozone Mapping Spectrometer (TOMS) over both land and ocean and from the Advanced Very High Resolution Radiometer (AVHRR) over the ocean The model reproduces most of the prominent features in the satellite data, with an overall agreement within a factor of 2 over the aerosol source areas and outflow regions While there are clear differences among the satellite products, a major discrepancy between the model and the satellite data is that the model shows a stronger variation of t from source to remote regions Quantitative comparison of model and satellite data is still difficult, due to the large uncertainties involved in deriving the t values by both the model and satellite retrieval, and by the inconsistency in physical and optical parameters used between the model and the satellite retrieval The comparison of monthly averaged model results with the sun photometer network [Aerosol Robotics Network (AERONET)] measurements shows that the model reproduces the seasonal variations at most of the sites, especially the places where biomass burning or dust aerosol dominates

1,301 citations

Journal ArticleDOI
TL;DR: Specific mechanisms of contaminant-biochar retention and release over time and the environmental impact of biochar amendments on soil organisms remain somewhat unclear but must be investigated to ensure that the management of environmental pollution coincides with ecological sustainability.

1,289 citations

Journal ArticleDOI
TL;DR: This paper presented a revised version of the Hopkins Verbal Learning Test (HVLT) which includes a delayed recall trial, and therefore delays the yes/no recognition trial, which is essential for the assessment of abnormal forgetting.
Abstract: The Hopkins Verbal Learning Test (HVLT) is a brief verbal learning and memory test with six alternate forms. The HVLT is ideal in situations calling for repeated neuropsychological examinations, but it lacks a delayed recall trial which is essential for the assessment of abnormal forgetting. We present a revised version of the HVLT which includes a delayed recall trial, and therefore delays the yes/no recognition trial. The equivalence of test forms was examined in two separate studies using between-groups and within-subjects research designs. In both studies, the six forms of the revised HVLT (HVLT-R) were found to be equivalent with respect to the recall trials, but there were some modest differences in recognition. Recommendations for the use of the HVLT-R in serial neuropsychological examinations are provided, as well as normative data tables from a sample of 541 subjects, spanning ages 17 to 88 years.

1,285 citations

Journal ArticleDOI
TL;DR: The 12th generation of the International Geomagnetic Reference Field (IGRF) was adopted in December 2014 by the Working Group V-MOD appointed by the International Association of Geomagnetism and Aeronomy (IAGA) as discussed by the authors.
Abstract: The 12th generation of the International Geomagnetic Reference Field (IGRF) was adopted in December 2014 by the Working Group V-MOD appointed by the International Association of Geomagnetism and Aeronomy (IAGA). It updates the previous IGRF generation with a definitive main field model for epoch 2010.0, a main field model for epoch 2015.0, and a linear annual predictive secular variation model for 2015.0-2020.0. Here, we present the equations defining the IGRF model, provide the spherical harmonic coefficients, and provide maps of the magnetic declination, inclination, and total intensity for epoch 2015.0 and their predicted rates of change for 2015.0-2020.0. We also update the magnetic pole positions and discuss briefly the latest changes and possible future trends of the Earth’s magnetic field.

1,268 citations


Authors

Showing all 8862 results

NameH-indexPapersCitations
Robert C. Gallo14582568212
Paul T. Costa13340688454
Igor V. Moskalenko13254258182
James Chiang12930860268
Alex K.-Y. Jen12892161811
Alan R. Shuldiner12055771737
Richard N. Zare120120167880
Vince D. Calhoun117123462205
Rita R. Colwell11578155229
Kendall N. Houk11299754877
Elliot K. Fishman112133549298
Yoram J. Kaufman11126359238
Paulo Artaxo10745444346
Braxton D. Mitchell10255849599
Sushil Jajodia10166435556
Network Information
Related Institutions (5)
Pennsylvania State University
196.8K papers, 8.3M citations

94% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

94% related

University of Washington
305.5K papers, 17.7M citations

93% related

University of California, San Diego
204.5K papers, 12.3M citations

93% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202371
2022165
20211,065
20201,091
2019989
2018929