scispace - formally typeset
Search or ask a question
Institution

University of Maryland Biotechnology Institute

About: University of Maryland Biotechnology Institute is a based out in . It is known for research contribution in the topics: Gene & Population. The organization has 1565 authors who have published 2458 publications receiving 171434 citations. The organization is also known as: UMBI.


Papers
More filters
Journal ArticleDOI
TL;DR: MOLREP is an automated program for molecular replacement that utilizes a number of original approaches to rotational and translational search and data preparation that includes weighting of the X-ray data and search models, multi-copy search, fitting the model into electron density, structural superposition of two models and rigid-body refinement.
Abstract: MOLREP is an automated program for molecular replacement that utilizes a number of original approaches to rotational and translational search and data preparation. Since the first publication describing the program, MOLREP has acquired a variety of features that include weighting of the X-ray data and search models, multi-copy search, fitting the model into electron density, structural superposition of two models and rigid-body refinement. The program can run in a fully automatic mode using optimized parameters calculated from the input data.

3,073 citations

Journal ArticleDOI
Robert A. Holt1, G. Mani Subramanian1, Aaron L. Halpern1, Granger G. Sutton1, Rosane Charlab1, Deborah R. Nusskern1, Patrick Wincker2, Andrew G. Clark3, José M. C. Ribeiro4, Ron Wides5, Steven L. Salzberg6, Brendan J. Loftus6, Mark Yandell1, William H. Majoros1, William H. Majoros6, Douglas B. Rusch1, Zhongwu Lai1, Cheryl L. Kraft1, Josep F. Abril, Véronique Anthouard2, Peter Arensburger7, Peter W. Atkinson7, Holly Baden1, Véronique de Berardinis2, Danita Baldwin1, Vladimir Benes, Jim Biedler8, Claudia Blass, Randall Bolanos1, Didier Boscus2, Mary Barnstead1, Shuang Cai1, Kabir Chatuverdi1, George K. Christophides, Mathew A. Chrystal9, Michele Clamp10, Anibal Cravchik1, Val Curwen10, Ali N Dana9, Arthur L. Delcher1, Ian M. Dew1, Cheryl A. Evans1, Michael Flanigan1, Anne Grundschober-Freimoser11, Lisa Friedli7, Zhiping Gu1, Ping Guan1, Roderic Guigó, Maureen E. Hillenmeyer9, Susanne L. Hladun1, James R. Hogan9, Young S. Hong9, Jeffrey Hoover1, Olivier Jaillon2, Zhaoxi Ke9, Zhaoxi Ke1, Chinnappa D. Kodira1, Kokoza Eb, Anastasios C. Koutsos12, Ivica Letunic, Alex Levitsky1, Yong Liang1, Jhy-Jhu Lin6, Jhy-Jhu Lin1, Neil F. Lobo9, John Lopez1, Joel A. Malek6, Tina C. McIntosh1, Stephan Meister, Jason R. Miller1, Clark M. Mobarry1, Emmanuel Mongin13, Sean D. Murphy1, David A. O'Brochta11, Cynthia Pfannkoch1, Rong Qi1, Megan A. Regier1, Karin A. Remington1, Hongguang Shao8, Maria V. Sharakhova9, Cynthia Sitter1, Jyoti Shetty6, Thomas J. Smith1, Renee Strong1, Jingtao Sun1, Dana Thomasova, Lucas Q. Ton9, Pantelis Topalis12, Zhijian Tu8, Maria F. Unger9, Brian P. Walenz1, Aihui Wang1, Jian Wang1, Mei Wang1, X. Wang9, Kerry J. Woodford1, Jennifer R. Wortman6, Jennifer R. Wortman1, Martin Wu6, Alison Yao1, Evgeny M. Zdobnov, Hongyu Zhang1, Qi Zhao1, Shaying Zhao6, Shiaoping C. Zhu1, Igor F. Zhimulev, Mario Coluzzi14, Alessandra della Torre14, Charles Roth15, Christos Louis12, Francis Kalush1, Richard J. Mural1, Eugene W. Myers1, Mark Raymond Adams1, Hamilton O. Smith1, Samuel Broder1, Malcolm J. Gardner6, Claire M. Fraser6, Ewan Birney13, Peer Bork, Paul T. Brey15, J. Craig Venter1, J. Craig Venter6, Jean Weissenbach2, Fotis C. Kafatos, Frank H. Collins9, Stephen L. Hoffman1 
04 Oct 2002-Science
TL;DR: Analysis of the PEST strain of A. gambiae revealed strong evidence for about 14,000 protein-encoding transcripts, and prominent expansions in specific families of proteins likely involved in cell adhesion and immunity were noted.
Abstract: Anopheles gambiae is the principal vector of malaria, a disease that afflicts more than 500 million people and causes more than 1 million deaths each year. Tenfold shotgun sequence coverage was obtained from the PEST strain of A. gambiae and assembled into scaffolds that span 278 million base pairs. A total of 91% of the genome was organized in 303 scaffolds; the largest scaffold was 23.1 million base pairs. There was substantial genetic variation within this strain, and the apparent existence of two haplotypes of approximately equal frequency ("dual haplotypes") in a substantial fraction of the genome likely reflects the outbred nature of the PEST strain. The sequence produced a conservative inference of more than 400,000 single-nucleotide polymorphisms that showed a markedly bimodal density distribution. Analysis of the genome sequence revealed strong evidence for about 14,000 protein-encoding transcripts. Prominent expansions in specific families of proteins likely involved in cell adhesion and immunity were noted. An expressed sequence tag analysis of genes regulated by blood feeding provided insights into the physiological adaptations of a hematophagous insect.

2,033 citations

Journal ArticleDOI
03 Aug 2000-Nature
TL;DR: The V. cholerae genomic sequence provides a starting point for understanding how a free-living, environmental organism emerged to become a significant human bacterial pathogen.
Abstract: Here we determine the complete genomic sequence of the Gram negative, g-Proteobacterium Vibrio cholerae El Tor N16961 to be 4,033,460 base pairs (bp). The genome consists of two circular chromosomes of 2,961,146 bp and 1,072,314 bp that together encode 3,885 open reading frames. The vast majority of recognizable genes for essential cell functions (such as DNA replication, transcription, translation and cell-wall biosynthesis) and pathogenicity (for example, toxins, surface antigens and adhesins) are located on the large chromosome. In contrast, the small chromosome contains a larger fraction (59%) of hypothetical genes compared with the large chromosome (42%), and also contains many more genes that appear to have origins other than the g-Proteobacteria. The small chromosome also carries a gene capture system (the integron island) and host ‘addiction’ genes that are typically found on plasmids; thus, the small chromosome may have originally been a megaplasmid that was captured by an ancestral Vibrio species. The V. cholerae genomic sequence provides a starting point for understanding how a free-living, environmental organism emerged to become a significant human bacterial pathogen.

1,785 citations

Journal ArticleDOI
03 Sep 1999-Science
TL;DR: A dramatic global increase in the severity of coral bleaching in 1997-98 is coincident with high El Niño temperatures, which climate-mediated, physiological stresses may compromise host resistance and increase frequency of opportunistic diseases.
Abstract: Mass mortalities due to disease outbreaks have recently affected major taxa in the oceans. For closely monitored groups like corals and marine mammals, reports of the frequency of epidemics and the number of new diseases have increased recently. A dramatic global increase in the severity of coral bleaching in 1997—98 is coincident with high El Nino temperatures. Such climate-mediated, physiological stresses may compromise host resistance and increase frequency of opportunistic diseases. Where documented, new diseases typically have emerged through host or range shifts of known pathogens. Both climate and human activities may have also accelerated global transport of species, bringing together pathogens and previously unexposed host populations. T he oceans harbor enormous biodiver- sity by terrestrial terms (1), much of which is still poorly described taxo- nomically. Even less well known are the dy- namics of intermittent, ephemeral, threshold phenomena such as disease outbreaks. De- spite decades of intense study of the biolog- ical agents structuring natural communities, the ecological and evolutionary impact of diseases in the ocean remains unknown, even when these diseases affect economically and ecologically important species. The paucity of baseline and epidemiological information on normal disease levels in the ocean chal- lenges our ability to assess the novelty of a recent spate of disease outbreaks and to de- termine the relative importance of increased pathogen transmission versus decreased host resistance in facilitating the outbreaks. Our objectives here are to review the prevalence of diseases of marine taxa to evaluate wheth- er it can be concluded that there has been a recent increase. We also assess the contribut- ing roles of human activity and global cli- mate, and evaluate the role of the oceans as incubators and conveyors of human disease agents. Is There an Increase in Diseases in the Ocean?

1,778 citations

Journal ArticleDOI
10 Jan 1997-Cell
TL;DR: Transformation of the cloned wild-type NPR1 gene into npr1 mutants not only restored the responsiveness to SAR induction with respect to PR-gene expression and resistance to infections, but also rendered the transgenic plants more resistant to infection by P. syringae in the absence of SAR induction.

1,449 citations


Authors

Showing all 1565 results

NameH-indexPapersCitations
Stanley B. Prusiner16874597528
Robert C. Gallo14582568212
Thomas J. Smith1401775113919
J. D. Hansen12297576198
Stephen Mann12066955008
Donald M. Bers11857052757
Jon Clardy11698356617
Rita R. Colwell11578155229
Joseph R. Lakowicz10485076257
Patrick M. Schlievert9044432037
Mitsuhiko Ikura8931634132
Jeremy Thorner8723429999
Lawrence E. Samelson8720927398
Jacques Ravel8632345793
W. J. Lederer7921325509
Network Information
Related Institutions (5)
Laboratory of Molecular Biology
24.2K papers, 2.1M citations

90% related

Scripps Research Institute
32.8K papers, 2.9M citations

90% related

Howard Hughes Medical Institute
34.6K papers, 5.2M citations

89% related

Weizmann Institute of Science
54.5K papers, 3M citations

88% related

National Institutes of Health
297.8K papers, 21.3M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20214
202011
201918
201822
201724
201626