scispace - formally typeset
Search or ask a question
Institution

University of Massachusetts Amherst

EducationAmherst Center, Massachusetts, United States
About: University of Massachusetts Amherst is a education organization based out in Amherst Center, Massachusetts, United States. It is known for research contribution in the topics: Population & Galaxy. The organization has 37274 authors who have published 83965 publications receiving 3834996 citations. The organization is also known as: UMass Amherst & Massachusetts State College.


Papers
More filters
Journal ArticleDOI
10 Jul 2015-Science
TL;DR: This work concludes that during recent interglacial periods, small increases in global mean temperature and just a few degrees of polar warming relative to the preindustrial period resulted in ≥6 m of GMSL rise, which is currently not possible to make a precise estimate of peak G MSL during the Pliocene.
Abstract: BACKGROUND:Although thermal expansion of seawater and melting of mountain glaciers have dominated global mean sea level (GMSL) rise over the last century, mass loss from the Greenland and Antarctic ice sheets is expected to exceed other contributions to GMSL rise under future warming. To better constrain polarice-sheetresponse to warmer temperatures, we draw on evidence from in- terglacial periods in the geologic record that ex- perienced warmer polar temperatures and higher GMSLs than present. Coastal records of sea level from these previous warm periods dem- onstrate geographic variability because of the influence of several geophysical processes that operate across a range of magnitudes and time scales. Inferring GMSL and ice- volume changes from these reconstructions is nontrivial and generally requires the use of geophysical models. ADVANCES: Interdisciplinary studies of geo- logic archives have ushered in a new era of deciphering magnitudes, rates, and sources of sea-level rise. Advances in our understanding of polar ice-sheet response to warmer climates have been made through an increase in the number and geographic distribution of sea- level reconstructions, better ice-sheet constraints, and the recognition that several geophysical processes cause spatially complex patterns in sea level. In particular, accounting for glacial isostatic processes helps to decipher spatial variability in coastal sea-level records and has reconciled a number of site-specific sea-level reconstructions for warm periods that have oc- curred within the past several hundred thou- sand years. This enables us to infer that during recent interglacial periods, small increases in

540 citations

Journal ArticleDOI
TL;DR: It was evident that electron-donating substitution on the aromatic rings strengthened the pi-pi interaction between the aromatics and CNTs and thus the adsorption affinity, which will advance the understanding of the sorption behavior of C NTs in the environmental systems.
Abstract: With increasing production and application of carbon nanotubes (CNTs), it becomes necessary to understand the interaction between CNTs and aromatic compounds, an important group of organic contaminants and structural components of large organic molecules in biological systems. However, so far few experimental studies have been conducted to systematically investigate the sorption mechanism of polar aromatics to CNTs. Therefore, cyclohexanol, phenol, catechol, pyrogallol, 2-phenylphenol, 1-naphthol, and naphthalene were selected to investigate the role of aromatic structure and -OH substitution in the polar aromatics-CNTs system. Sorption affinity of these compounds by CNTs increased with increasing number of aromatic rings, with an order of cyclohexanol < phenol < 2-phenylphenol < 1-naphthol, and was greatly enhanced by -OH substitution, with an order of phenol (1 -OH) < catechol (2 -OH) < pyrogallol(3-OH). Four possible solute-sorbent interactions, i.e., hydrophobic effect, electrostatic interaction, hydrogen bonding, and pi-pi bonds, were discussed to addressthe underlying mechanism of the enhanced sorption affinity by -OH substitution. It was evident that electron-donating substitution on the aromatic rings strengthened the pi-pi interaction between the aromatics and CNTs and thus the adsorption affinity. These results will advance the understanding of the sorption behavior of CNTs in the environmental systems.

540 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Matthew Abernathy1  +955 moreInstitutions (96)
TL;DR: Following a major upgrade, the two advanced detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) held their first observation run between September 2015 and January 2016, and observed a transient gravitational-wave signal determined to be the coalescence of two black holes.
Abstract: Following a major upgrade, the two advanced detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) held their first observation run between September 2015 and January 2016. With a strain sensitivity of $10^{-23}/\sqrt{\mathrm{Hz}}$ at 100 Hz, the product of observable volume and measurement time exceeded that of all previous runs within the first 16 days of coincident observation. On September 14th, 2015 the Advanced LIGO detectors observed a transient gravitational-wave signal determined to be the coalescence of two black holes [Phys. Rev. Lett. 116, 061102 (2016)], launching the era of gravitational-wave astronomy. The event, GW150914, was observed with a combined signal-to-noise ratio of 24 in coincidence by the two detectors. Here we present the main features of the detectors that enabled this observation. At full sensitivity, the Advanced LIGO detectors are designed to deliver another factor of three improvement in the signal-to-noise ratio for binary black hole systems similar in masses to GW150914.

539 citations

Journal ArticleDOI
TL;DR: A statistical framework is used for finding boundaries and for partitioning scenes into homogeneous regions and incorporates a measure of disparity between certain spatial features of block pairs of pixel gray levels, using the Kolmogorov-Smirnov nonparametric measures of difference between the distributions of these features.
Abstract: A statistical framework is used for finding boundaries and for partitioning scenes into homogeneous regions. The model is a joint probability distribution for the array of pixel gray levels and an array of labels. In boundary finding, the labels are binary, zero, or one, representing the absence or presence of boundary elements. In partitioning, the label values are generic: two labels are the same when the corresponding scene locations are considered to belong to the same region. The distribution incorporates a measure of disparity between certain spatial features of block pairs of pixel gray levels, using the Kolmogorov-Smirnov nonparametric measures of difference between the distributions of these features. The number of model parameters is minimized by forbidding label configurations, which are assigned probability zero. The maximum a posteriori estimator of boundary placements and partitionings is examined. The forbidden states introduce constraints into the calculation of these configurations. Stochastic relaxation methods are extended to accommodate constrained optimization. >

539 citations


Authors

Showing all 37601 results

NameH-indexPapersCitations
George M. Whitesides2401739269833
Joan Massagué189408149951
David H. Weinberg183700171424
David L. Kaplan1771944146082
Michael I. Jordan1761016216204
James F. Sallis169825144836
Bradley T. Hyman169765136098
Anton M. Koekemoer1681127106796
Derek R. Lovley16858295315
Michel C. Nussenzweig16551687665
Alfred L. Goldberg15647488296
Donna Spiegelman15280485428
Susan E. Hankinson15178988297
Bernard Moss14783076991
Roger J. Davis147498103478
Network Information
Related Institutions (5)
Cornell University
235.5K papers, 12.2M citations

96% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

96% related

University of Minnesota
257.9K papers, 11.9M citations

96% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

95% related

University of Toronto
294.9K papers, 13.5M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023103
2022535
20213,983
20203,858
20193,712
20183,385