scispace - formally typeset
Search or ask a question
Institution

University of Massachusetts Amherst

EducationAmherst Center, Massachusetts, United States
About: University of Massachusetts Amherst is a education organization based out in Amherst Center, Massachusetts, United States. It is known for research contribution in the topics: Population & Galaxy. The organization has 37274 authors who have published 83965 publications receiving 3834996 citations. The organization is also known as: UMass Amherst & Massachusetts State College.


Papers
More filters
Journal ArticleDOI
26 Nov 2010-Science
TL;DR: It is shown that pyrolysis oils can be converted into industrial commodity chemical feedstocks using an integrated catalytic approach that combines hydroprocessing with zeolite catalysis, and the total product yield can be adjusted depending on market values of the chemical feedstock and the relative prices of the hydrogen and biomass.
Abstract: Fast pyrolysis of lignocellulosic biomass produces a renewable liquid fuel called pyrolysis oil that is the cheapest liquid fuel produced from biomass today Here we show that pyrolysis oils can be converted into industrial commodity chemical feedstocks using an integrated catalytic approach that combines hydroprocessing with zeolite catalysis The hydroprocessing increases the intrinsic hydrogen content of the pyrolysis oil, producing polyols and alcohols The zeolite catalyst then converts these hydrogenated products into light olefins and aromatic hydrocarbons in a yield as much as three times higher than that produced with the pure pyrolysis oil The yield of aromatic hydrocarbons and light olefins from the biomass conversion over zeolite is proportional to the intrinsic amount of hydrogen added to the biomass feedstock during hydroprocessing The total product yield can be adjusted depending on market values of the chemical feedstocks and the relative prices of the hydrogen and biomass

986 citations

Posted Content
TL;DR: This paper proposed bilinear models, which consists of two feature extractors whose outputs are multiplied using outer product at each location of the image and pooled to obtain an image descriptor, which can model local pairwise feature interactions in a translationally invariant manner.
Abstract: We propose bilinear models, a recognition architecture that consists of two feature extractors whose outputs are multiplied using outer product at each location of the image and pooled to obtain an image descriptor. This architecture can model local pairwise feature interactions in a translationally invariant manner which is particularly useful for fine-grained categorization. It also generalizes various orderless texture descriptors such as the Fisher vector, VLAD and O2P. We present experiments with bilinear models where the feature extractors are based on convolutional neural networks. The bilinear form simplifies gradient computation and allows end-to-end training of both networks using image labels only. Using networks initialized from the ImageNet dataset followed by domain specific fine-tuning we obtain 84.1% accuracy of the CUB-200-2011 dataset requiring only category labels at training time. We present experiments and visualizations that analyze the effects of fine-tuning and the choice two networks on the speed and accuracy of the models. Results show that the architecture compares favorably to the existing state of the art on a number of fine-grained datasets while being substantially simpler and easier to train. Moreover, our most accurate model is fairly efficient running at 8 frames/sec on a NVIDIA Tesla K40 GPU. The source code for the complete system will be made available at this http URL

983 citations

Proceedings ArticleDOI
22 Apr 2001
TL;DR: This work uses a previously developed nonlinear dynamic model of TCP to analyze and design active queue management (AQM) control systems using random early detection (RED) and presents guidelines for designing linearly stable systems subject to network parameters like propagation delay and load level.
Abstract: We use a previously developed nonlinear dynamic model of TCP to analyze and design active queue management (AQM) control systems using random early detection (RED). First, we linearize the interconnection of TCP and a bottlenecked queue and discuss its feedback properties in terms of network parameters such as link capacity, load and round-trip time. Using this model, we next design an AQM control system using the RED scheme by relating its free parameters such as the low-pass filter break point and loss probability profile to the network parameters. We present guidelines for designing linearly stable systems subject to network parameters like propagation delay and load level. Robustness to variations in system loads is a prime objective. We present no simulations to support our analysis.

974 citations


Authors

Showing all 37601 results

NameH-indexPapersCitations
George M. Whitesides2401739269833
Joan Massagué189408149951
David H. Weinberg183700171424
David L. Kaplan1771944146082
Michael I. Jordan1761016216204
James F. Sallis169825144836
Bradley T. Hyman169765136098
Anton M. Koekemoer1681127106796
Derek R. Lovley16858295315
Michel C. Nussenzweig16551687665
Alfred L. Goldberg15647488296
Donna Spiegelman15280485428
Susan E. Hankinson15178988297
Bernard Moss14783076991
Roger J. Davis147498103478
Network Information
Related Institutions (5)
Cornell University
235.5K papers, 12.2M citations

96% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

96% related

University of Minnesota
257.9K papers, 11.9M citations

96% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

95% related

University of Toronto
294.9K papers, 13.5M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023103
2022536
20213,983
20203,858
20193,712
20183,385