scispace - formally typeset
Search or ask a question
Institution

University of Massachusetts Amherst

EducationAmherst Center, Massachusetts, United States
About: University of Massachusetts Amherst is a education organization based out in Amherst Center, Massachusetts, United States. It is known for research contribution in the topics: Population & Galaxy. The organization has 37274 authors who have published 83965 publications receiving 3834996 citations. The organization is also known as: UMass Amherst & Massachusetts State College.


Papers
More filters
Journal ArticleDOI
TL;DR: The results demonstrate that a fine and balanced modification/design of chemical structure can make significant performance differences and that the performance of solution-processed small-molecule-based solar cells can be comparable to or even surpass that of their polymer counterparts.
Abstract: A series of acceptor-donor-acceptor simple oligomer-like small molecules based on oligothiophenes, namely, DRCN4T-DRCN9T, were designed and synthesized. Their optical, electrical, and thermal properties and photovoltaic performances were systematically investigated. Except for DRCN4T, excellent performances were obtained for DRCN5T-DRCN9T. The devices based on DRCN5T, DRCN7T, and DRCN9T with axisymmetric chemical structures exhibit much higher short-circuit current densities than those based on DRCN6T and DRCN8T with centrosymmetric chemical structures, which is attributed to their well-developed fibrillar network with a feature size less than 20 nm. The devices based on DRCN5T/PC71BM showed a notable certified power conversion efficiency (PCE) of 10.10% under AM 1.5G irradiation (100 mW cm(-2)) using a simple solution spin-coating fabrication process. This is the highest PCE for single-junction small-molecule-based organic photovoltaics (OPVs) reported to date. DRCN5T is a rather simpler molecule compared with all of the other high-performance molecules in OPVs to date, and this might highlight its advantage in the future possible commercialization of OPVs. These results demonstrate that a fine and balanced modification/design of chemical structure can make significant performance differences and that the performance of solution-processed small-molecule-based solar cells can be comparable to or even surpass that of their polymer counterparts.

766 citations

ReportDOI
01 Dec 2004
TL;DR: Initial results from a computational study of intrinsically motivated reinforcement learning aimed at allowing artificial agents to construct and extend hierarchies of reusable skills that are needed for competent autonomy are presented.
Abstract: Psychologists call behavior intrinsically motivated when it is engaged in for its own sake rather than as a step toward solving a specific problem of clear practical value. But what we learn during intrinsically motivated behavior is essential for our development as competent autonomous entities able to efficiently solve a wide range of practical problems as they arise. In this paper we present initial results from a computational study of intrinsically motivated reinforcement learning aimed at allowing artificial agents to construct and extend hierarchies of reusable skills that are needed for competent autonomy.

766 citations

Journal ArticleDOI
18 Oct 2002-Science
TL;DR: Variable deposition of F– and Na+during the African Humid Period suggests rapidly fluctuating lake levels between ∼11.7 and 4 ka, which is coincident with the “First Dark Age,” the period of the greatest historically recorded drought in tropical Africa.
Abstract: Six ice cores from Kilimanjaro provide an ∼11.7-thousand-year record of Holocene climate and environmental variability for eastern equatorial Africa, including three periods of abrupt climate change: ∼8.3, ∼5.2, and ∼4 thousand years ago (ka). The latter is coincident with the “First Dark Age,” the period of the greatest historically recorded drought in tropical Africa. Variable deposition of F – and Na + during the African Humid Period suggests rapidly fluctuating lake levels between ∼11.7 and 4 ka. Over the 20th century, the areal extent of Kilimanjaro9s ice fields has decreased ∼80%, and if current climatological conditions persist, the remaining ice fields are likely to disappear between 2015 and 2020.

765 citations

Journal ArticleDOI
TL;DR: In this article, a solution-processed small-molecule solar cells with almost 100% internal quantum efficiency and a power conversion efficiency of 9% were reported, making use of a donor molecule called DRCN7T and use PC71BM as an acceptor.
Abstract: Solution-processed small-molecule solar cells with almost 100% internal quantum efficiency and a power conversion efficiency of 9% are reported. The cells make use of a donor molecule called DRCN7T and use PC71BM as an acceptor.

764 citations

Journal ArticleDOI
TL;DR: In this article, the authors showed that nanofilaments derived from natural amino acids can have metallic-like conductivity and showed that they can be used to construct a metallic conductivity network.
Abstract: Networks of nanofilaments derived from natural amino acids can have metallic-like conductivity.

764 citations


Authors

Showing all 37601 results

NameH-indexPapersCitations
George M. Whitesides2401739269833
Joan Massagué189408149951
David H. Weinberg183700171424
David L. Kaplan1771944146082
Michael I. Jordan1761016216204
James F. Sallis169825144836
Bradley T. Hyman169765136098
Anton M. Koekemoer1681127106796
Derek R. Lovley16858295315
Michel C. Nussenzweig16551687665
Alfred L. Goldberg15647488296
Donna Spiegelman15280485428
Susan E. Hankinson15178988297
Bernard Moss14783076991
Roger J. Davis147498103478
Network Information
Related Institutions (5)
Cornell University
235.5K papers, 12.2M citations

96% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

96% related

University of Minnesota
257.9K papers, 11.9M citations

96% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

95% related

University of Toronto
294.9K papers, 13.5M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023103
2022535
20213,983
20203,858
20193,712
20183,385