scispace - formally typeset
Search or ask a question
Institution

University of Medicine and Dentistry of New Jersey

Education
About: University of Medicine and Dentistry of New Jersey is a based out in . It is known for research contribution in the topics: Population & Poison control. The organization has 14634 authors who have published 19610 publications receiving 1041794 citations.


Papers
More filters
Journal ArticleDOI
04 Oct 1984-Nature
TL;DR: It is reported that pargyline, nialamide and tranylcypromine, which inhibit both MAO-A andMAO-B, when administered to mice before MPTP, protect against MPTP-induced dopaminergic neurotoxicity.
Abstract: 1-Methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP) causes degeneration of the dopaminergic nigrostriatal pathway in several animal species, including humans1,2, monkeys3,4 and mice5–7. Changes observed after MPTP administration include marked decrements in the neostriatal content of dopamine and its major metabolites, dihydroxyphenylacetic acid and homovanillic acid, and a greatly diminished capacity of neostriatal synaptosomes to take up 3H-dopamine5,6. In contrast, there is no pronounced loss of serotonin in the neostriatum or of dopamine and its metabolites in other brain areas in MPTP-treated animals. The oxidative metabolism of MPTP to 1-methyl-4-phenyl pyridine, a positively charged species, has been suggested as a critical feature in the neurotoxic process8. Moreover, in rat brain preparations, the monoamine oxidase (MAO) inhibitor pargyline and the specific MAO-B inhibitor deprenil can prevent the formation of 1-methyl-4-phenyl-pyridine from MPTP, while the specific MAO-A inhibitor clorgyline has no such effect9, suggesting that MAO, and specifically MAO-B, is responsible for the oxidative metabolism of MPTP. We now report that pargyline, nialamide and tranylcypromine, which inhibit both MAO-A and MAO-B, when administered to mice before MPTP, protect against MPTP-induced dopaminergic neurotoxicity. Deprenil is also protective, but clorgyline is not. Our data are consistent with the premise that MAO-B has a crucial role in MPTP-induced degeneration of the nigrostriatal dopaminergic neuronal pathway.

1,010 citations

Journal ArticleDOI
TL;DR: This work provides a comprehensive functional connectivity analysis of basal ganglia circuitry in humans through a functional magnetic resonance imaging examination during rest and revealed subtler distinctions within striatal subregions not previously appreciated by task-based imaging approaches.
Abstract: Classically regarded as motor structures, the basal ganglia subserve a wide range of functions, including motor, cognitive, motivational, and emotional processes. Consistent with this broad-reaching involvement in brain function, basal ganglia dysfunction has been implicated in numerous neurological and psychiatric disorders. Despite recent advances in human neuroimaging, models of basal ganglia circuitry continue to rely primarily upon inference from animal studies. Here, we provide a comprehensive functional connectivity analysis of basal ganglia circuitry in humans through a functional magnetic resonance imaging examination during rest. Voxelwise regression analyses substantiated the hypothesized motor, cognitive, and affective divisions among striatal subregions, and provided in vivo evidence of a functional organization consistent with parallel and integrative loop models described in animals. Our findings also revealed subtler distinctions within striatal subregions not previously appreciated by task-based imaging approaches. For instance, the inferior ventral striatum is functionally connected with medial portions of orbitofrontal cortex, whereas a more superior ventral striatal seed is associated with medial and lateral portions. The ability to map multiple distinct striatal circuits in a single study in humans, as opposed to relying on meta-analyses of multiple studies, is a principal strength of resting state functional magnetic resonance imaging. This approach holds promise for studying basal ganglia dysfunction in clinical disorders.

1,010 citations

Journal ArticleDOI
TL;DR: Specific evaluation, treatment guidelines, and algorithms were developed for every sexual dysfunction in men, including erectile dysfunction; disorders of libido, orgasm, and ejaculation; Peyronie's disease; and priapism.

993 citations

Journal ArticleDOI
TL;DR: This study adds to the growing evidence supporting the efficacy of TF-CBT with children suffering PTSD as a result of sexual abuse and suggests that this treatment for children who have experienced multiple traumas is suggested.
Abstract: Objective To examine the differential efficacy of trauma-focused cognitive-behavioral therapy (TF-CBT) and child-centered therapy for treating posttraumatic stress disorder (PTSD) and related emotional and behavioral problems in children who have suffered sexual abuse. Method Two hundred twenty-nine 8- to 14-year-old children and their primary caretakers were randomly assigned to the above alternative treatments. These children had significant symptoms of PTSD, with 89% meeting full DSM-IV PTSD diagnostic criteria. More than 90% of these children had experienced traumatic events in addition to sexual abuse. Results A series analyses of covariance indicated that children assigned to TF-CBT, compared to those assigned to child-centered therapy, demonstrated significantly more improvement with regard to PTSD, depression, behavior problems, shame, and abuse-related attributions. Similarly, parents assigned to TF-CBT showed greater improvement with respect to their own self-reported levels of depression, abuse-specific distress, support of the child, and effective parenting practices. Conclusions This study adds to the growing evidence supporting the efficacy of TF-CBT with children suffering PTSD as a result of sexual abuse and suggests the efficacy of this treatment for children who have experienced multiple traumas.

993 citations

Journal ArticleDOI
TL;DR: The results suggest that Sirt1 could retard aging and confer stress resistance to the heart in vivo, but these beneficial effects can be observed only at low to moderate doses (up to 7.5-fold) of Sirt 1.
Abstract: Silent information regulator (Sir)2, a class III histone deacetylase, mediates lifespan extension in model organisms and prevents apoptosis in mammalian cells. However, beneficial functions of Sir2 remain to be shown in mammals in vivo at the organ level, such as in the heart. We addressed this issue by using transgenic mice with heart-specific overexpression of Sirt1, a mammalian homolog of Sir2. Sirt1 was significantly upregulated (4- to 8-fold) in response to pressure overload and oxidative stress in nontransgenic adult mouse hearts. Low (2.5-fold) to moderate (7.5-fold) overexpression of Sirt1 in transgenic mouse hearts attenuated age-dependent increases in cardiac hypertrophy, apoptosis/fibrosis, cardiac dysfunction, and expression of senescence markers. In contrast, a high level (12.5-fold) of Sirt1 increased apoptosis and hypertrophy and decreased cardiac function, thereby stimulating the development of cardiomyopathy. Moderate overexpression of Sirt1 protected the heart from oxidative stress induced by paraquat, with increased expression of antioxidants, such as catalase, through forkhead box O (FoxO)-dependent mechanisms, whereas high levels of Sirt1 increased oxidative stress in the heart at baseline. Thus, mild to moderate expression of Sirt1 retards aging of the heart, whereas a high dose of Sirt1 induces cardiomyopathy. Furthermore, although high levels of Sirt1 increase oxidative stress, moderate expression of Sirt1 induces resistance to oxidative stress and apoptosis. These results suggest that Sirt1 could retard aging and confer stress resistance to the heart in vivo, but these beneficial effects can be observed only at low to moderate doses (up to 7.5-fold) of Sirt1.

987 citations


Authors

Showing all 14639 results

NameH-indexPapersCitations
John Q. Trojanowski2261467213948
Virginia M.-Y. Lee194993148820
Danny Reinberg14534268201
Michael F. Holick145767107937
Tasuku Honjo14171288428
Arnold J. Levine139485116005
Aaron T. Beck139536170816
Charles J. Yeo13667276424
Jerry W. Shay13363974774
Chung S. Yang12856056265
Paul G. Falkowski12737864898
Csaba Szabó12395861791
William C. Roberts122111755285
Bryan R. Cullen12137150901
John R. Perfect11957352325
Network Information
Related Institutions (5)
University of California, San Francisco
186.2K papers, 12M citations

97% related

University of Alabama at Birmingham
86.7K papers, 3.9M citations

96% related

Johns Hopkins University School of Medicine
79.2K papers, 4.7M citations

96% related

University of Texas Southwestern Medical Center
75.2K papers, 4.4M citations

96% related

National Institutes of Health
297.8K papers, 21.3M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20226
202113
20208
201917
201823
201736