scispace - formally typeset
Search or ask a question
Institution

University of Medicine and Dentistry of New Jersey

Education
About: University of Medicine and Dentistry of New Jersey is a based out in . It is known for research contribution in the topics: Population & Poison control. The organization has 14634 authors who have published 19610 publications receiving 1041794 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is established that NF-κB directly regulates the expression of distinct prosurvival factors in the Bcl-2 family, such as B cl-xL and Bfl-1/A1, and the possibility that some of these factors may contribute to oncogenesis associated with aberrant Rel/NF-κBs activity.
Abstract: The transcription factors of the Rel/NF-kappaB family are key regulators of immune and inflammatory responses and contribute to lymphocyte proliferation, survival, and oncogenesis. The absolute correlation between the antiapoptotic and oncogenic activities of the Rel/NF-kappaB oncoprotein v-Rel emphasizes the importance of characterizing the death antagonists under NF-kappaB control. Our recent finding that the prosurvival Bcl-2 homolog Bfl-1 (also called A1) is a direct transcriptional target of NF-kappaB raised the issue of whether NF-kappaB is a specific or global regulator of death antagonists in the Bcl-2 family. Here, we demonstrate that NF-kappaB differentially regulates the expression of particular Bcl-2-related death inhibitors and that it directly activates the expression of Bcl-x(L). While Bcl-x(L) was significantly upregulated by c-Rel and RelA, Bcl-2 was not. Importantly, stimuli that activate endogenous NF-kappaB factors also upregulated bcl-x gene expression and this effect was antagonized by an inhibitor of NF-kappaB activity. The expression of bcl-x suppressed apoptosis in the presence or absence of NF-kappaB activity. Functional analysis of the bcl-x promoter demonstrated that it is directly controlled by c-Rel. These results establish that NF-kappaB directly regulates the expression of distinct prosurvival factors in the Bcl-2 family, such as Bcl-x(L) and Bfl-1/A1. These findings raise the possibility that some of these factors may contribute to oncogenesis associated with aberrant Rel/NF-kappaB activity.

723 citations

Journal ArticleDOI
TL;DR: The Beck Cognitive Insight Scale (BCIS) was developed to evaluate patients' self-reflectiveness and their overconfidence in their interpretations of their experiences and the results provided tentative support for the validity of the scale.

715 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the pro-survival Bcl-2 homolog Bfl-1/A1 is a direct transcriptional target of NF-kB and that it can substitute forNF-kB to suppress TNFa-induced apoptosis.
Abstract: Bcl-2-family proteins are key regulators of the apoptotic response. Here, we demonstrate that the pro-survival Bcl-2 homolog Bfl-1/A1 is a direct transcriptional target of NF-kB. We show that bfl-1 gene expression is dependent on NF-kB activity and that it can substitute for NF-kB to suppress TNFa-induced apoptosis. bfl-1 promoter analysis identified an NF-kB site responsible for its Rel/NF-kB-dependent induction. The expression of bfl-1 in immune tissues supports the protective role of NF-kB in the immune system. The activation of Bfl-1 may be the means by which NF-kB functions in oncogenesis and promotes cell resistance to anti-cancer therapy.

708 citations

Journal ArticleDOI
08 Dec 2003-Oncogene
TL;DR: In this article, the role of Rel/NF- κ B in the regulation of apoptosis was investigated and it was shown that NF-κB is the answer to the question "To be or not to be?"
Abstract: To be, or not to be: NF- κ B is the answer – role of Rel/NF- κ B in the regulation of apoptosis

707 citations

Journal ArticleDOI
TL;DR: Results demonstrated that as a unique p53 target gene, GLS2 is a mediator of p53’s role in energy metabolism and antioxidant defense, which can contribute to its role in tumor suppression.
Abstract: Whereas cell cycle arrest, apoptosis, and senescence are traditionally thought of as the major functions of the tumor suppressor p53, recent studies revealed two unique functions for this protein: p53 regulates cellular energy metabolism and antioxidant defense mechanisms. Here, we identify glutaminase 2 (GLS2) as a previously uncharacterized p53 target gene to mediate these two functions of the p53 protein. GLS2 encodes a mitochondrial glutaminase catalyzing the hydrolysis of glutamine to glutamate. p53 increases the GLS2 expression under both nonstressed and stressed conditions. GLS2 regulates cellular energy metabolism by increasing production of glutamate and α-ketoglutarate, which in turn results in enhanced mitochondrial respiration and ATP generation. Furthermore, GLS2 regulates antioxidant defense function in cells by increasing reduced glutathione (GSH) levels and decreasing ROS levels, which in turn protects cells from oxidative stress (e.g., H2O2)-induced apoptosis. Consistent with these functions of GLS2, the activation of p53 increases the levels of glutamate and α-ketoglutarate, mitochondrial respiration rate, and GSH levels and decreases reactive oxygen species (ROS) levels in cells. Furthermore, GLS2 expression is lost or greatly decreased in hepatocellular carcinomas and the overexpression of GLS2 greatly reduced tumor cell colony formation. These results demonstrated that as a unique p53 target gene, GLS2 is a mediator of p53’s role in energy metabolism and antioxidant defense, which can contribute to its role in tumor suppression.

707 citations


Authors

Showing all 14639 results

NameH-indexPapersCitations
John Q. Trojanowski2261467213948
Virginia M.-Y. Lee194993148820
Danny Reinberg14534268201
Michael F. Holick145767107937
Tasuku Honjo14171288428
Arnold J. Levine139485116005
Aaron T. Beck139536170816
Charles J. Yeo13667276424
Jerry W. Shay13363974774
Chung S. Yang12856056265
Paul G. Falkowski12737864898
Csaba Szabó12395861791
William C. Roberts122111755285
Bryan R. Cullen12137150901
John R. Perfect11957352325
Network Information
Related Institutions (5)
University of California, San Francisco
186.2K papers, 12M citations

97% related

University of Alabama at Birmingham
86.7K papers, 3.9M citations

96% related

Johns Hopkins University School of Medicine
79.2K papers, 4.7M citations

96% related

University of Texas Southwestern Medical Center
75.2K papers, 4.4M citations

96% related

National Institutes of Health
297.8K papers, 21.3M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20226
202113
20208
201917
201823
201736