scispace - formally typeset
Search or ask a question
Institution

University of Medicine and Dentistry of New Jersey

Education
About: University of Medicine and Dentistry of New Jersey is a based out in . It is known for research contribution in the topics: Population & Pregnancy. The organization has 14634 authors who have published 19610 publications receiving 1041794 citations.
Topics: Population, Pregnancy, Poison control, Gene, Receptor


Papers
More filters
Journal ArticleDOI
TL;DR: This work assayed the efficacy of in vivo-driven RNAi in three situations for which heritable, inducible RNAi would be advantageous: production of large numbers of animals deficient for gene activities required for viability or reproduction; generation of large populations of phenocopy mutants for biochemical analysis; and effective gene inactivation in the nervous system.
Abstract: Double-stranded RNA interference (RNAi) is an effective method for disrupting expression of specific genes in Caenorhabditis elegans and other organisms. Applications of this reverse-genetics tool, however, are somewhat restricted in nematodes because introduced dsRNA is not stably inherited. Another difficulty is that RNAi disruption of late-acting genes has been generally less consistent than that of embryonically expressed genes, perhaps because the concentration of dsRNA becomes lower as cellular division proceeds or as developmental time advances. In particular, some neuronally expressed genes appear refractory to dsRNA-mediated interference. We sought to extend the applicability of RNAi by in vivo expression of heritable inverted-repeat (IR) genes. We assayed the efficacy of in vivo-driven RNAi in three situations for which heritable, inducible RNAi would be advantageous: (i) production of large numbers of animals deficient for gene activities required for viability or reproduction; (ii) generation of large populations of phenocopy mutants for biochemical analysis; and (iii) effective gene inactivation in the nervous system. We report that heritable IR genes confer potent and specific gene inactivation for each of these applications. We suggest that a similar strategy might be used to test for dsRNA interference effects in higher organisms in which it is feasible to construct transgenic animals, but impossible to directly or transiently introduce high concentrations of dsRNA.

510 citations

Book ChapterDOI
TL;DR: High-resolution crystal structures obtained for collagen model peptides confirm the supercoiled triple helix conformation, and provide new information on hydrogen bonding patterns, hydration, sidechain interactions, and ligand binding.
Abstract: The molecular conformation of the collagen triple helix confers strict amino acid sequence constraints, requiring a (Gly-X-Y)n repeating pattern and a high content of imino acids. The increasing family of collagens and proteins with collagenous domains shows the collagen triple helix to be a basic motif adaptable to a range of proteins and functions. Its rodlike domain has the potential for various modes of self-association and the capacity to bind receptors, other proteins, GAGs, and nucleic acids. High-resolution crystal structures obtained for collagen model peptides confirm the supercoiled triple helix conformation, and provide new information on hydrogen bonding patterns, hydration, sidechain interactions, and ligand binding. For several peptides, the helix twist was found to be sequence dependent, and such variation in helix twist may serve as recognition features or to orient the triple helix for binding. Mutations in the collagen triple-helix domain lead to a variety of human disorders. The most common mutations are single-base substitutions that lead to the replacement of one Gly residue, breaking the Gly-X-Y repeating pattern. A single Gly substitution destabilizes the triple helix through a local disruption in hydrogen bonding and produces a discontinuity in the register of the helix. Molecular information about the collagen triple helix and the effect of mutations will lead to a better understanding of function and pathology.

510 citations

Journal ArticleDOI
TL;DR: In this paper, the authors identified a viral IL-10 homolog encoded by an ORF (UL111a) within the human cytomegalovirus (CMV) genome, which they designated cmvIL-10.
Abstract: We identified a viral IL-10 homolog encoded by an ORF (UL111a) within the human cytomegalovirus (CMV) genome, which we designated cmvIL-10. cmvIL-10 can bind to the human IL-10 receptor and can compete with human IL-10 for binding sites, despite the fact that these two proteins are only 27% identical. cmvIL-10 requires both subunits of the IL-10 receptor complex to induce signal transduction events and biological activities. The structure of the cmvIL-10 gene is unique by itself. The gene retained two of four introns of the IL-10 gene, but the length of the introns was reduced. We demonstrated that cmvIL-10 is expressed in CMV-infected cells. Thus, expression of cmvIL-10 extends the range of counter measures developed by CMV to circumvent detection and destruction by the host immune system.

509 citations

Journal ArticleDOI
TL;DR: Omapatrilat provided broadly superior antihypertensive efficacy when used in a setting resembling clinical practice and the risk-benefit profile for omap atrilat in clinical use appears likely to be favorable in appropriate patients.

507 citations


Authors

Showing all 14639 results

NameH-indexPapersCitations
John Q. Trojanowski2261467213948
Virginia M.-Y. Lee194993148820
Danny Reinberg14534268201
Michael F. Holick145767107937
Tasuku Honjo14171288428
Arnold J. Levine139485116005
Aaron T. Beck139536170816
Charles J. Yeo13667276424
Jerry W. Shay13363974774
Chung S. Yang12856056265
Paul G. Falkowski12737864898
Csaba Szabó12395861791
William C. Roberts122111755285
Bryan R. Cullen12137150901
John R. Perfect11957352325
Network Information
Related Institutions (5)
University of California, San Francisco
186.2K papers, 12M citations

97% related

University of Alabama at Birmingham
86.7K papers, 3.9M citations

96% related

Johns Hopkins University School of Medicine
79.2K papers, 4.7M citations

96% related

University of Texas Southwestern Medical Center
75.2K papers, 4.4M citations

96% related

National Institutes of Health
297.8K papers, 21.3M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20226
202113
20208
201917
201823
201736