scispace - formally typeset
Search or ask a question

Showing papers by "University of Michigan published in 2010"


Journal ArticleDOI
TL;DR: A new method and the corresponding software tool, PolyPhen-2, which is different from the early tool polyPhen1 in the set of predictive features, alignment pipeline, and the method of classification is presented and performance, as presented by its receiver operating characteristic curves, was consistently superior.
Abstract: To the Editor: Applications of rapidly advancing sequencing technologies exacerbate the need to interpret individual sequence variants. Sequencing of phenotyped clinical subjects will soon become a method of choice in studies of the genetic causes of Mendelian and complex diseases. New exon capture techniques will direct sequencing efforts towards the most informative and easily interpretable protein-coding fraction of the genome. Thus, the demand for computational predictions of the impact of protein sequence variants will continue to grow. Here we present a new method and the corresponding software tool, PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/), which is different from the early tool PolyPhen1 in the set of predictive features, alignment pipeline, and the method of classification (Fig. 1a). PolyPhen-2 uses eight sequence-based and three structure-based predictive features (Supplementary Table 1) which were selected automatically by an iterative greedy algorithm (Supplementary Methods). Majority of these features involve comparison of a property of the wild-type (ancestral, normal) allele and the corresponding property of the mutant (derived, disease-causing) allele, which together define an amino acid replacement. Most informative features characterize how well the two human alleles fit into the pattern of amino acid replacements within the multiple sequence alignment of homologous proteins, how distant the protein harboring the first deviation from the human wild-type allele is from the human protein, and whether the mutant allele originated at a hypermutable site2. The alignment pipeline selects the set of homologous sequences for the analysis using a clustering algorithm and then constructs and refines their multiple alignment (Supplementary Fig. 1). The functional significance of an allele replacement is predicted from its individual features (Supplementary Figs. 2–4) by Naive Bayes classifier (Supplementary Methods). Figure 1 PolyPhen-2 pipeline and prediction accuracy. (a) Overview of the algorithm. (b) Receiver operating characteristic (ROC) curves for predictions made by PolyPhen-2 using five-fold cross-validation on HumDiv (red) and HumVar3 (light green). UniRef100 (solid ... We used two pairs of datasets to train and test PolyPhen-2. We compiled the first pair, HumDiv, from all 3,155 damaging alleles with known effects on the molecular function causing human Mendelian diseases, present in the UniProt database, together with 6,321 differences between human proteins and their closely related mammalian homologs, assumed to be non-damaging (Supplementary Methods). The second pair, HumVar3, consists of all the 13,032 human disease-causing mutations from UniProt, together with 8,946 human nsSNPs without annotated involvement in disease, which were treated as non-damaging. We found that PolyPhen-2 performance, as presented by its receiver operating characteristic curves, was consistently superior compared to PolyPhen (Fig. 1b) and it also compared favorably with the three other popular prediction tools4–6 (Fig. 1c). For a false positive rate of 20%, PolyPhen-2 achieves the rate of true positive predictions of 92% and 73% on HumDiv and HumVar, respectively (Supplementary Table 2). One reason for a lower accuracy of predictions on HumVar is that nsSNPs assumed to be non-damaging in HumVar contain a sizable fraction of mildly deleterious alleles. In contrast, most of amino acid replacements assumed non-damaging in HumDiv must be close to selective neutrality. Because alleles that are even mildly but unconditionally deleterious cannot be fixed in the evolving lineage, no method based on comparative sequence analysis is ideal for discriminating between drastically and mildly deleterious mutations, which are assigned to the opposite categories in HumVar. Another reason is that HumDiv uses an extra criterion to avoid possible erroneous annotations of damaging mutations. For a mutation, PolyPhen-2 calculates Naive Bayes posterior probability that this mutation is damaging and reports estimates of false positive (the chance that the mutation is classified as damaging when it is in fact non-damaging) and true positive (the chance that the mutation is classified as damaging when it is indeed damaging) rates. A mutation is also appraised qualitatively, as benign, possibly damaging, or probably damaging (Supplementary Methods). The user can choose between HumDiv- and HumVar-trained PolyPhen-2. Diagnostics of Mendelian diseases requires distinguishing mutations with drastic effects from all the remaining human variation, including abundant mildly deleterious alleles. Thus, HumVar-trained PolyPhen-2 should be used for this task. In contrast, HumDiv-trained PolyPhen-2 should be used for evaluating rare alleles at loci potentially involved in complex phenotypes, dense mapping of regions identified by genome-wide association studies, and analysis of natural selection from sequence data, where even mildly deleterious alleles must be treated as damaging.

11,571 citations


Book ChapterDOI
TL;DR: This paper provides a concise overview of time series analysis in the time and frequency domains with lots of references for further reading.
Abstract: Any series of observations ordered along a single dimension, such as time, may be thought of as a time series. The emphasis in time series analysis is on studying the dependence among observations at different points in time. What distinguishes time series analysis from general multivariate analysis is precisely the temporal order imposed on the observations. Many economic variables, such as GNP and its components, price indices, sales, and stock returns are observed over time. In addition to being interested in the contemporaneous relationships among such variables, we are often concerned with relationships between their current and past values, that is, relationships over time.

9,919 citations


Journal ArticleDOI
28 Oct 2010-Nature
TL;DR: The 1000 Genomes Project aims to provide a deep characterization of human genome sequence variation as a foundation for investigating the relationship between genotype and phenotype as mentioned in this paper, and the results of the pilot phase of the project, designed to develop and compare different strategies for genomewide sequencing with high-throughput platforms.
Abstract: The 1000 Genomes Project aims to provide a deep characterization of human genome sequence variation as a foundation for investigating the relationship between genotype and phenotype. Here we present results of the pilot phase of the project, designed to develop and compare different strategies for genome-wide sequencing with high-throughput platforms. We undertook three projects: low-coverage whole-genome sequencing of 179 individuals from four populations; high-coverage sequencing of two mother-father-child trios; and exon-targeted sequencing of 697 individuals from seven populations. We describe the location, allele frequency and local haplotype structure of approximately 15 million single nucleotide polymorphisms, 1 million short insertions and deletions, and 20,000 structural variants, most of which were previously undescribed. We show that, because we have catalogued the vast majority of common variation, over 95% of the currently accessible variants found in any individual are present in this data set. On average, each person is found to carry approximately 250 to 300 loss-of-function variants in annotated genes and 50 to 100 variants previously implicated in inherited disorders. We demonstrate how these results can be used to inform association and functional studies. From the two trios, we directly estimate the rate of de novo germline base substitution mutations to be approximately 10(-8) per base pair per generation. We explore the data with regard to signatures of natural selection, and identify a marked reduction of genetic variation in the neighbourhood of genes, due to selection at linked sites. These methods and public data will support the next phase of human genetic research.

7,538 citations


Journal ArticleDOI
TL;DR: This new classification system redefines the current paradigm of RA by focusing on features at earlier stages of disease that are associated with persistent and/or erosive disease, rather than defining the disease by its late-stage features.
Abstract: Objective The 1987 American College of Rheumatology (ACR; formerly the American Rheumatism Association) classifi cation criteria for rheumatoid arthritis (RA) have been criticised for their lack of sensitivity in early disease. This work was undertaken to develop new classifi cation criteria for RA. Methods A joint working group from the ACR and the European League Against Rheumatism developed, in three phases, a new approach to classifying RA. The work focused on identifying, among patients newly presenting with undifferentiated infl ammatory synovitis, factors that best discriminated between those who were and those who were not at high risk for persistent and/ or erosive disease—this being the appropriate current paradigm underlying the disease construct ‘RA’. Results In the new criteria set, classifi cation as ‘defi nite RA’ is based on the confi rmed presence of synovitis in at least one joint, absence of an alternative diagnosis better explaining the synovitis, and achievement of a total score of 6 or greater (of a possible 10) from the individual scores in four domains: number and site of involved joints (range 0–5), serological abnormality (range 0–3), elevated acute-phase response (range 0–1) and symptom duration (two levels; range 0–1). Conclusion This new classifi cation system redefi nes the current paradigm of RA by focusing on features at earlier stages of disease that are associated with persistent and/or erosive disease, rather than defi ning the disease by its late-stage features. This will refocus attention on the important need for earlier diagnosis and institution of effective disease-suppressing therapy to prevent or minimise the occurrence of the undesirable sequelae that currently comprise the paradigm underlying the disease construct ‘RA’.

7,120 citations


Journal ArticleDOI
TL;DR: The Statistical Update brings together the most up-to-date statistics on heart disease, stroke, other vascular diseases, and their risk factors and presents them in its Heart Disease and Stroke Statistical Update each year.
Abstract: Appendix I: List of Statistical Fact Sheets. URL: http://www.americanheart.org/presenter.jhtml?identifier=2007 We wish to thank Drs Brian Eigel and Michael Wolz for their valuable comments and contributions. We would like to acknowledge Tim Anderson and Tom Schneider for their editorial contributions and Karen Modesitt for her administrative assistance. Disclosures View this table: View this table: View this table: # Summary {#article-title-2} Each year, the American Heart Association, in conjunction with the Centers for Disease Control and Prevention, the National Institutes of Health, and other government agencies, brings together the most up-to-date statistics on heart disease, stroke, other vascular diseases, and their risk factors and presents them in its Heart Disease and Stroke Statistical Update. The Statistical Update is a valuable resource for researchers, clinicians, healthcare policy makers, media professionals, the lay public, and many others who seek the best national data available on disease …

6,176 citations


Journal ArticleDOI
TL;DR: This new classification system redefines the current paradigm of RA by focusing on features at earlier stages of disease that are associated with persistent and/or erosive disease, rather than defining the disease by its late-stage features.
Abstract: Objective The 1987 American College of Rheumatology (ACR; formerly the American Rheumatism Association) classification criteria for rheumatoid arthritis (RA) have been criticised for their lack of sensitivity in early disease. This work was undertaken to develop new classification criteria for RA. Methods A joint working group from the ACR and the European League Against Rheumatism developed, in three phases, a new approach to classifying RA. The work focused on identifying, among patients newly presenting with undifferentiated inflammatory synovitis, factors that best discriminated between those who were and those who were not at high risk for persistent and/or erosive disease—this being the appropriate current paradigm underlying the disease construct ‘RA’. Results In the new criteria set, classification as ‘definite RA’ is based on the confirmed presence of synovitis in at least one joint, absence of an alternative diagnosis better explaining the synovitis, and achievement of a total score of 6 or greater (of a possible 10) from the individual scores in four domains: number and site of involved joints (range 0–5), serological abnormality (range 0–3), elevated acute-phase response (range 0–1) and symptom duration (two levels; range 0–1). Conclusion This new classification system redefines the current paradigm of RA by focusing on features at earlier stages of disease that are associated with persistent and/or erosive disease, rather than defining the disease by its late-stage features. This will refocus attention on the important need for earlier diagnosis and institution of effective disease-suppressing therapy to prevent or minimise the occurrence of the undesirable sequelae that currently comprise the paradigm underlying the disease construct ‘RA’.

5,964 citations


Journal ArticleDOI
TL;DR: The iterative threading assembly refinement (I-TASSER) server is an integrated platform for automated protein structure and function prediction based on the sequence- to-structure-to-function paradigm.
Abstract: The iterative threading assembly refinement (I-TASSER) server is an integrated platform for automated protein structure and function prediction based on the sequence-to-structure-to-function paradigm. Starting from an amino acid sequence, I-TASSER first generates three-dimensional (3D) atomic models from multiple threading alignments and iterative structural assembly simulations. The function of the protein is then inferred by structurally matching the 3D models with other known proteins. The output from a typical server run contains full-length secondary and tertiary structure predictions, and functional annotations on ligand-binding sites, Enzyme Commission numbers and Gene Ontology terms. An estimate of accuracy of the predictions is provided based on the confidence score of the modeling. This protocol provides new insights and guidelines for designing of online server systems for the state-of-the-art protein structure and function predictions. The server is available at http://zhanglab.ccmb.med.umich.edu/I-TASSER.

5,792 citations


Journal ArticleDOI
30 Sep 2010-Nature
TL;DR: The first worldwide synthesis to jointly consider human and biodiversity perspectives on water security using a spatial framework that quantifies multiple stressors and accounts for downstream impacts is presented.
Abstract: Protecting the world’s freshwater resources requires diagnosing threats over a broad range of scales, from global to local. Here we present the first worldwide synthesis to jointly consider human and biodiversity perspectives on water security using a spatial framework that quantifies multiple stressors and accounts for downstream impacts. We find that nearly 80% of the world’s population is exposed to high levels of threat to water security. Massive investment in water technology enables rich nations to offset high stressor levels without remedying their underlying causes, whereas less wealthy nations remain vulnerable. A similar lack of precautionary investment jeopardizes biodiversity, with habitats associated with 65% of continental discharge classified as moderately to highly threatened. The cumulative threat framework offers a tool for prioritizing policy and management responses to this crisis, and underscores the necessity of limiting threats at their source instead of through costly remediation of symptoms in order to assure global water security for both humans and freshwater biodiversity.

5,401 citations


Journal ArticleDOI
TL;DR: It is the opinion of the writing group that the overall evidence is consistent with a causal relationship between PM2.5 exposure and cardiovascular morbidity and mortality.
Abstract: In 2004, the first American Heart Association scientific statement on “Air Pollution and Cardiovascular Disease” concluded that exposure to particulate matter (PM) air pollution contributes to card...

5,227 citations


Journal ArticleDOI
TL;DR: This is the first comprehensive review encompassing the large body of work in this field over the past 5 years, and will focus specifically on ligand-directed C–H functionalization reactions catalyzed by palladium.
Abstract: 1.1 Introduction to Pd-catalyzed directed C–H functionalization The development of methods for the direct conversion of carbon–hydrogen bonds into carbon-oxygen, carbon-halogen, carbon-nitrogen, carbon-sulfur, and carbon-carbon bonds remains a critical challenge in organic chemistry. Mild and selective transformations of this type will undoubtedly find widespread application across the chemical field, including in the synthesis of pharmaceuticals, natural products, agrochemicals, polymers, and feedstock commodity chemicals. Traditional approaches for the formation of such functional groups rely on pre-functionalized starting materials for both reactivity and selectivity. However, the requirement for installing a functional group prior to the desired C–O, C–X, C–N, C–S, or C–C bond adds costly chemical steps to the overall construction of a molecule. As such, circumventing this issue will not only improve atom economy but also increase the overall efficiency of multi-step synthetic sequences. Direct C–H bond functionalization reactions are limited by two fundamental challenges: (i) the inert nature of most carbon-hydrogen bonds and (ii) the requirement to control site selectivity in molecules that contain diverse C–H groups. A multitude of studies have addressed the first challenge by demonstrating that transition metals can react with C–H bonds to produce C–M bonds in a process known as “C–H activation”.1 The resulting C–M bonds are far more reactive than their C–H counterparts, and in many cases they can be converted to new functional groups under mild conditions. The second major challenge is achieving selective functionalization of a single C–H bond within a complex molecule. While several different strategies have been employed to address this issue, the most common (and the subject of the current review) involves the use of substrates that contain coordinating ligands. These ligands (often termed “directing groups”) bind to the metal center and selectively deliver the catalyst to a proximal C–H bond. Many different transition metals, including Ru, Rh, Pt, and Pd, undergo stoichiometric ligand-directed C–H activation reactions (also known as cyclometalation).2,3 Furthermore, over the past 15 years, a variety of catalytic carbon-carbon bond-forming processes have been developed that involve cyclometalation as a key step.1b–d,4 The current review will focus specifically on ligand-directed C–H functionalization reactions catalyzed by palladium. Palladium complexes are particularly attractive catalysts for such transformations for several reasons. First, ligand-directed C–H functionalization at Pd centers can be used to install many different types of bonds, including carbon-oxygen, carbon-halogen, carbon-nitrogen, carbon-sulfur, and carbon-carbon linkages. Few other catalysts allow such diverse bond constructions,5,6,7 and this versatility is predominantly the result of two key features: (i) the compatibility of many PdII catalysts with oxidants and (ii) the ability to selectively functionalize cyclopalladated intermediates. Second, palladium participates in cyclometalation with a wide variety of directing groups, and, unlike many other transition metals, promotes C–H activation at both sp2 and sp3 C–H sites. Finally, the vast majority of Pd-catalyzed directed C–H functionalization reactions can be performed in the presence of ambient air and moisture, making them exceptionally practical for applications in organic synthesis. While several accounts have described recent advances, this is the first comprehensive review encompassing the large body of work in this field over the past 5 years (2004–2009). Both synthetic applications and mechanistic aspects of these transformations are discussed where appropriate, and the review is organized on the basis of the type of bond being formed.

5,179 citations


Journal ArticleDOI
TL;DR: METAL provides a computationally efficient tool for meta-analysis of genome-wide association scans, which is a commonly used approach for improving power complex traits gene mapping studies.
Abstract: Summary: METAL provides a computationally efficient tool for meta-analysis of genome-wide association scans, which is a commonly used approach for improving power complex traits gene mapping studies. METAL provides a rich scripting interface and implements efficient memory management to allow analyses of very large data sets and to support a variety of input file formats. Availability and implementation: METAL, including source code, documentation, examples, and executables, is available at http://www.sph.umich.edu/csg/abecasis/metal/ Contact: ude.hcimu@olacnog

Journal ArticleDOI
TL;DR: An international Expert Panel that conducted a systematic review and evaluation of the literature and developed recommendations for optimal IHC ER/PgR testing performance recommended that ER and PgR status be determined on all invasive breast cancers and breast cancer recurrences.
Abstract: Purpose To develop a guideline to improve the accuracy of immunohistochemical (IHC) estrogen receptor (ER) and progesterone receptor (PgR) testing in breast cancer and the utility of these receptors as predictive markers. Methods The American Society of Clinical Oncology and the College of American Pathologists convened an international Expert Panel that conducted a systematic review and evaluation of the literature in partnership with Cancer Care Ontario and developed recommendations for optimal IHC ER/PgR testing performance. Results Up to 20% of current IHC determinations of ER and PgR testing worldwide may be inaccurate (false negative or false positive). Most of the issues with testing have occurred because of variation in preanalytic variables, thresholds for positivity, and interpretation criteria. Recommendations The Panel recommends that ER and PgR status be determined on all invasive breast cancers and breast cancer recurrences. A testing algorithm that relies on accurate, reproducible assay performance is proposed. Elements to reliably reduce assay variation are specified. It is recommended that ER and PgR assays be considered positive if there are at least 1% positive tumor nuclei in the sample on testing in the presence of expected reactivity of internal (normal epithelial elements) and external controls. The absence of benefit from endocrine therapy for women with ER-negative invasive breast cancers has been confirmed in large overviews of randomized clinical trials.

Journal ArticleDOI
TL;DR: A nanoscale silicon-based memristor device is experimentally demonstrated and it is shown that a hybrid system composed of complementary metal-oxide semiconductor neurons and Memristor synapses can support important synaptic functions such as spike timing dependent plasticity.
Abstract: A memristor is a two-terminal electronic device whose conductance can be precisely modulated by charge or flux through it. Here we experimentally demonstrate a nanoscale silicon-based memristor device and show that a hybrid system composed of complementary metal−oxide semiconductor neurons and memristor synapses can support important synaptic functions such as spike timing dependent plasticity. Using memristors as synapses in neuromorphic circuits can potentially offer both high connectivity and high density required for efficient computing.

Journal ArticleDOI
05 Aug 2010-Nature
TL;DR: The results identify several novel loci associated with plasma lipids that are also associated with CAD and provide the foundation to develop a broader biological understanding of lipoprotein metabolism and to identify new therapeutic opportunities for the prevention of CAD.
Abstract: Plasma concentrations of total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol and triglycerides are among the most important risk factors for coronary artery disease (CAD) and are targets for therapeutic intervention. We screened the genome for common variants associated with plasma lipids in >100,000 individuals of European ancestry. Here we report 95 significantly associated loci (P < 5 x 10(-8)), with 59 showing genome-wide significant association with lipid traits for the first time. The newly reported associations include single nucleotide polymorphisms (SNPs) near known lipid regulators (for example, CYP7A1, NPC1L1 and SCARB1) as well as in scores of loci not previously implicated in lipoprotein metabolism. The 95 loci contribute not only to normal variation in lipid traits but also to extreme lipid phenotypes and have an impact on lipid traits in three non-European populations (East Asians, South Asians and African Americans). Our results identify several novel loci associated with plasma lipids that are also associated with CAD. Finally, we validated three of the novel genes-GALNT2, PPP1R3B and TTC39B-with experiments in mouse models. Taken together, our findings provide the foundation to develop a broader biological understanding of lipoprotein metabolism and to identify new therapeutic opportunities for the prevention of CAD.

Journal ArticleDOI
Rameen Beroukhim, Craig H. Mermel1, Craig H. Mermel2, Dale Porter3, Guo Wei1, Soumya Raychaudhuri4, Soumya Raychaudhuri1, Jerry Donovan3, Jordi Barretina1, Jordi Barretina2, Jesse S. Boehm1, Jennifer Dobson1, Jennifer Dobson2, Mitsuyoshi Urashima5, Kevin T. Mc Henry3, Reid M. Pinchback1, Azra H. Ligon4, Yoon Jae Cho6, Leila Haery2, Leila Haery1, Heidi Greulich, Michael R. Reich1, Wendy Winckler1, Michael S. Lawrence1, Barbara A. Weir1, Barbara A. Weir2, Kumiko E. Tanaka2, Kumiko E. Tanaka1, Derek Y. Chiang2, Derek Y. Chiang7, Derek Y. Chiang1, Adam J. Bass2, Adam J. Bass1, Adam J. Bass4, Alice Loo3, Carter Hoffman2, Carter Hoffman1, John R. Prensner2, John R. Prensner1, Ted Liefeld1, Qing Gao1, Derek Yecies2, Sabina Signoretti4, Sabina Signoretti2, Elizabeth A. Maher8, Frederic J. Kaye, Hidefumi Sasaki9, Joel E. Tepper7, Jonathan A. Fletcher4, Josep Tabernero10, José Baselga10, Ming-Sound Tsao11, Francesca Demichelis12, Mark A. Rubin12, Pasi A. Jänne4, Pasi A. Jänne2, Mark J. Daly1, Mark J. Daly2, Carmelo Nucera13, Ross L. Levine14, Benjamin L. Ebert4, Benjamin L. Ebert2, Benjamin L. Ebert1, Stacey Gabriel1, Anil K. Rustgi15, Cristina R. Antonescu14, Marc Ladanyi14, Anthony Letai2, Levi A. Garraway2, Levi A. Garraway1, Massimo Loda4, Massimo Loda2, David G. Beer16, Lawrence D. True17, Aikou Okamoto5, Scott L. Pomeroy6, Samuel Singer14, Todd R. Golub2, Todd R. Golub1, Todd R. Golub18, Eric S. Lander19, Eric S. Lander1, Eric S. Lander2, Gad Getz1, William R. Sellers3, Matthew Meyerson2, Matthew Meyerson1 
18 Feb 2010-Nature
TL;DR: It is demonstrated that cancer cells containing amplifications surrounding the MCL1 and BCL2L1 anti-apoptotic genes depend on the expression of these genes for survival, and a large majority of SCNAs identified in individual cancer types are present in several cancer types.
Abstract: A powerful way to discover key genes with causal roles in oncogenesis is to identify genomic regions that undergo frequent alteration in human cancers. Here we present high-resolution analyses of somatic copy-number alterations (SCNAs) from 3,131 cancer specimens, belonging largely to 26 histological types. We identify 158 regions of focal SCNA that are altered at significant frequency across several cancer types, of which 122 cannot be explained by the presence of a known cancer target gene located within these regions. Several gene families are enriched among these regions of focal SCNA, including the BCL2 family of apoptosis regulators and the NF-kappaBeta pathway. We show that cancer cells containing amplifications surrounding the MCL1 and BCL2L1 anti-apoptotic genes depend on the expression of these genes for survival. Finally, we demonstrate that a large majority of SCNAs identified in individual cancer types are present in several cancer types.

Journal ArticleDOI
TL;DR: To develop simple, practical criteria for clinical diagnosis of fibromyalgia that are suitable for use in primary and specialty care and that do not require a tender point examination, and to provide a severity scale for characteristic fibromyalgic symptoms.
Abstract: Objective To develop simple, practical criteria for clinical diagnosis of fibromyalgia that are suitable for use in primary and specialty care and that do not require a tender point examination, and to provide a severity scale for characteristic fibromyalgia symptoms. Methods We performed a multicenter study of 829 previously diagnosed fibromyalgia patients and controls using physician physical and interview examinations, including a widespread pain index (WPI), a measure of the number of painful body regions. Random forest and recursive partitioning analyses were used to guide the development of a case definition of fibromyalgia, to develop criteria, and to construct a symptom severity (SS) scale. Results Approximately 25% of fibromyalgia patients did not satisfy the American College of Rheumatology (ACR) 1990 classification criteria at the time of the study. The most important diagnostic variables were WPI and categorical scales for cognitive symptoms, unrefreshed sleep, fatigue, and number of somatic symptoms. The categorical scales were summed to create an SS scale. We combined the SS scale and the WPI to recommend a new case definition of fibromyalgia: (WPI > or =7 AND SS > or =5) OR (WPI 3-6 AND SS > or =9). Conclusion This simple clinical case definition of fibromyalgia correctly classifies 88.1% of cases classified by the ACR classification criteria, and does not require a physical or tender point examination. The SS scale enables assessment of fibromyalgia symptom severity in persons with current or previous fibromyalgia, and in those to whom the criteria have not been applied. It will be especially useful in the longitudinal evaluation of patients with marked symptom variability.

Journal ArticleDOI
29 Apr 2010-Nature
TL;DR: It is shown that cholesterol crystals activate the NLRP3 inflammasome in phagocytes in vitro in a process that involves phagolysosomal damage and that crystalline cholesterol acts as an endogenous danger signal and its deposition in arteries or elsewhere is an early cause rather than a late consequence of inflammation.
Abstract: The inflammatory nature of atherosclerosis is well established but the agent(s) that incite inflammation in the artery wall remain largely unknown. Germ-free animals are susceptible to atherosclerosis, suggesting that endogenous substances initiate the inflammation. Mature atherosclerotic lesions contain macroscopic deposits of cholesterol crystals in the necrotic core, but their appearance late in atherogenesis had been thought to disqualify them as primary inflammatory stimuli. However, using a new microscopic technique, we revealed that minute cholesterol crystals are present in early diet-induced atherosclerotic lesions and that their appearance in mice coincides with the first appearance of inflammatory cells. Other crystalline substances can induce inflammation by stimulating the caspase-1-activating NLRP3 (NALP3 or cryopyrin) inflammasome, which results in cleavage and secretion of interleukin (IL)-1 family cytokines. Here we show that cholesterol crystals activate the NLRP3 inflammasome in phagocytes in vitro in a process that involves phagolysosomal damage. Similarly, when injected intraperitoneally, cholesterol crystals induce acute inflammation, which is impaired in mice deficient in components of the NLRP3 inflammasome, cathepsin B, cathepsin L or IL-1 molecules. Moreover, when mice deficient in low-density lipoprotein receptor (LDLR) were bone-marrow transplanted with NLRP3-deficient, ASC (also known as PYCARD)-deficient or IL-1alpha/beta-deficient bone marrow and fed on a high-cholesterol diet, they had markedly decreased early atherosclerosis and inflammasome-dependent IL-18 levels. Minimally modified LDL can lead to cholesterol crystallization concomitant with NLRP3 inflammasome priming and activation in macrophages. Although there is the possibility that oxidized LDL activates the NLRP3 inflammasome in vivo, our results demonstrate that crystalline cholesterol acts as an endogenous danger signal and its deposition in arteries or elsewhere is an early cause rather than a late consequence of inflammation. These findings provide new insights into the pathogenesis of atherosclerosis and indicate new potential molecular targets for the therapy of this disease.

Journal ArticleDOI
Koji Nakamura1, K. Hagiwara, Ken Ichi Hikasa2, Hitoshi Murayama1  +180 moreInstitutions (92)
TL;DR: In this article, a biennial review summarizes much of particle physics using data from previous editions, plus 2158 new measurements from 551 papers, they list, evaluate and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons.
Abstract: This biennial Review summarizes much of particle physics. Using data from previous editions, plus 2158 new measurements from 551 papers, we list, evaluate, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons. We also summarize searches for hypothetical particles such as Higgs bosons, heavy neutrinos, and supersymmetric particles. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as the Standard Model, particle detectors, probability, and statistics. Among the 108 reviews are many that are new or heavily revised including those on neutrino mass, mixing, and oscillations, QCD, top quark, CKM quark-mixing matrix, V-ud & V-us, V-cb & V-ub, fragmentation functions, particle detectors for accelerator and non-accelerator physics, magnetic monopoles, cosmological parameters, and big bang cosmology.

Journal ArticleDOI
TL;DR: The 1000 Functional Connectomes Project (Fcon_1000) as discussed by the authors is a large-scale collection of functional connectome data from 1,414 volunteers collected independently at 35 international centers.
Abstract: Although it is being successfully implemented for exploration of the genome, discovery science has eluded the functional neuroimaging community. The core challenge remains the development of common paradigms for interrogating the myriad functional systems in the brain without the constraints of a priori hypotheses. Resting-state functional MRI (R-fMRI) constitutes a candidate approach capable of addressing this challenge. Imaging the brain during rest reveals large-amplitude spontaneous low-frequency (<0.1 Hz) fluctuations in the fMRI signal that are temporally correlated across functionally related areas. Referred to as functional connectivity, these correlations yield detailed maps of complex neural systems, collectively constituting an individual's "functional connectome." Reproducibility across datasets and individuals suggests the functional connectome has a common architecture, yet each individual's functional connectome exhibits unique features, with stable, meaningful interindividual differences in connectivity patterns and strengths. Comprehensive mapping of the functional connectome, and its subsequent exploitation to discern genetic influences and brain-behavior relationships, will require multicenter collaborative datasets. Here we initiate this endeavor by gathering R-fMRI data from 1,414 volunteers collected independently at 35 international centers. We demonstrate a universal architecture of positive and negative functional connections, as well as consistent loci of inter-individual variability. Age and sex emerged as significant determinants. These results demonstrate that independent R-fMRI datasets can be aggregated and shared. High-throughput R-fMRI can provide quantitative phenotypes for molecular genetic studies and biomarkers of developmental and pathological processes in the brain. To initiate discovery science of brain function, the 1000 Functional Connectomes Project dataset is freely accessible at www.nitrc.org/projects/fcon_1000/.

Journal ArticleDOI
TL;DR: Genetic loci associated with body mass index map near key hypothalamic regulators of energy balance, and one of these loci is near GIPR, an incretin receptor, which may provide new insights into human body weight regulation.
Abstract: Obesity is globally prevalent and highly heritable, but its underlying genetic factors remain largely elusive. To identify genetic loci for obesity susceptibility, we examined associations between body mass index and similar to 2.8 million SNPs in up to 123,865 individuals with targeted follow up of 42 SNPs in up to 125,931 additional individuals. We confirmed 14 known obesity susceptibility loci and identified 18 new loci associated with body mass index (P < 5 x 10(-8)), one of which includes a copy number variant near GPRC5B. Some loci (at MC4R, POMC, SH2B1 and BDNF) map near key hypothalamic regulators of energy balance, and one of these loci is near GIPR, an incretin receptor. Furthermore, genes in other newly associated loci may provide new insights into human body weight regulation.

Journal ArticleDOI
TL;DR: The triggers and receptor pathways that result in sterile inflammation and its impact on human health are reviewed.
Abstract: Over the past several decades, much has been revealed about the nature of the host innate immune response to microorganisms, with the identification of pattern recognition receptors (PRRs) and pathogen-associated molecular patterns, which are the conserved microbial motifs sensed by these receptors. It is now apparent that these same PRRs can also be activated by non-microbial signals, many of which are considered as damage-associated molecular patterns. The sterile inflammation that ensues either resolves the initial insult or leads to disease. Here, we review the triggers and receptor pathways that result in sterile inflammation and its impact on human health.

Journal ArticleDOI
06 May 2010
TL;DR: The Soil Moisture Active Passive mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council's Decadal Survey to make global measurements of the soil moisture present at the Earth's land surface.
Abstract: The Soil Moisture Active Passive (SMAP) mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council's Decadal Survey SMAP will make global measurements of the soil moisture present at the Earth's land surface and will distinguish frozen from thawed land surfaces Direct observations of soil moisture and freeze/thaw state from space will allow significantly improved estimates of water, energy, and carbon transfers between the land and the atmosphere The accuracy of numerical models of the atmosphere used in weather prediction and climate projections are critically dependent on the correct characterization of these transfers Soil moisture measurements are also directly applicable to flood assessment and drought monitoring SMAP observations can help monitor these natural hazards, resulting in potentially great economic and social benefits SMAP observations of soil moisture and freeze/thaw timing will also reduce a major uncertainty in quantifying the global carbon balance by helping to resolve an apparent missing carbon sink on land over the boreal latitudes The SMAP mission concept will utilize L-band radar and radiometer instruments sharing a rotating 6-m mesh reflector antenna to provide high-resolution and high-accuracy global maps of soil moisture and freeze/thaw state every two to three days In addition, the SMAP project will use these observations with advanced modeling and data assimilation to provide deeper root-zone soil moisture and net ecosystem exchange of carbon SMAP is scheduled for launch in the 2014-2015 time frame

Journal ArticleDOI
TL;DR: This chapter summarizes key work in this area with a particular focus on chronic disease outcomes (specifically obesity and related risk factors) and mental health ( specifically depression and depressive symptoms) and empirical work is classified into two main eras.
Abstract: Features of neighborhoods or residential environments may affect health and contribute to social and race/ethnic inequalities in health. The study of neighborhood health effects has grown exponentially over the past 15 years. This chapter summarizes key work in this area with a particular focus on chronic disease outcomes (specifically obesity and related risk factors) and mental health (specifically depression and depressive symptoms). Empirical work is classified into two main eras: studies that use census proxies and studies that directly measure neighborhood attributes using a variety of approaches. Key conceptual and methodological challenges in studying neighborhood health effects are reviewed. Existing gaps in knowledge and promising new directions in the field are highlighted.


Journal ArticleDOI
TL;DR: A variance component approach implemented in publicly available software, EMMA eXpedited (EMMAX), that reduces the computational time for analyzing large GWAS data sets from years to hours is reported.
Abstract: Although genome-wide association studies (GWASs) have identified numerous loci associated with complex traits, imprecise modeling of the genetic relatedness within study samples may cause substantial inflation of test statistics and possibly spurious associations. Variance component approaches, such as efficient mixed-model association (EMMA), can correct for a wide range of sample structures by explicitly accounting for pairwise relatedness between individuals, using high-density markers to model the phenotype distribution; but such approaches are computationally impractical. We report here a variance component approach implemented in publicly available software, EMMA eXpedited (EMMAX), that reduces the computational time for analyzing large GWAS data sets from years to hours. We apply this method to two human GWAS data sets, performing association analysis for ten quantitative traits from the Northern Finland Birth Cohort and seven common diseases from the Wellcome Trust Case Control Consortium. We find that EMMAX outperforms both principal component analysis and genomic control in correcting for sample structure.

Journal ArticleDOI
Josée Dupuis1, Josée Dupuis2, Claudia Langenberg, Inga Prokopenko3  +336 moreInstitutions (82)
TL;DR: It is demonstrated that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes.
Abstract: Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes.

Journal ArticleDOI
TL;DR: It is shown that genotype imputation of common variants using HapMap haplotypes as a reference is very accurate using either genome‐wide SNP data or smaller amounts of data typical in fine‐mapping studies, and it is illustrated how association analyses of unobserved variants will benefit from ongoing advances such as larger Hap map reference panels and whole genome shotgun sequencing technologies.
Abstract: Genome-wide association studies (GWAS) can identify common alleles that contribute to complex disease susceptibility. Despite the large number of SNPs assessed in each study, the effects of most common SNPs must be evaluated indirectly using either genotyped markers or haplotypes thereof as proxies. We have previously implemented a computationally efficient Markov Chain framework for genotype imputation and haplotyping in the freely available MaCH software package. The approach describes sampled chromosomes as mosaics of each other and uses available genotype and shotgun sequence data to estimate unobserved genotypes and haplotypes, together with useful measures of the quality of these estimates. Our approach is already widely used to facilitate comparison of results across studies as well as meta-analyses of GWAS. Here, we use simulations and experimental genotypes to evaluate its accuracy and utility, considering choices of genotyping panels, reference panel configurations, and designs where genotyping is replaced with shotgun sequencing. Importantly, we show that genotype imputation not only facilitates cross study analyses but also increases power of genetic association studies. We show that genotype imputation of common variants using HapMap haplotypes as a reference is very accurate using either genome-wide SNP data or smaller amounts of data typical in fine-mapping studies. Furthermore, we show the approach is applicable in a variety of populations. Finally, we illustrate how association analyses of unobserved variants will benefit from ongoing advances such as larger HapMap reference panels and whole genome shotgun sequencing technologies.

Journal ArticleDOI
Dalila Pinto1, Alistair T. Pagnamenta2, Lambertus Klei3, Richard Anney4  +178 moreInstitutions (46)
15 Jul 2010-Nature
TL;DR: The genome-wide characteristics of rare (<1% frequency) copy number variation in ASD are analysed using dense genotyping arrays to reveal many new genetic and functional targets in ASD that may lead to final connected pathways.
Abstract: The autism spectrum disorders (ASDs) are a group of conditions characterized by impairments in reciprocal social interaction and communication, and the presence of restricted and repetitive behaviours. Individuals with an ASD vary greatly in cognitive development, which can range from above average to intellectual disability. Although ASDs are known to be highly heritable ( approximately 90%), the underlying genetic determinants are still largely unknown. Here we analysed the genome-wide characteristics of rare (<1% frequency) copy number variation in ASD using dense genotyping arrays. When comparing 996 ASD individuals of European ancestry to 1,287 matched controls, cases were found to carry a higher global burden of rare, genic copy number variants (CNVs) (1.19 fold, P = 0.012), especially so for loci previously implicated in either ASD and/or intellectual disability (1.69 fold, P = 3.4 x 10(-4)). Among the CNVs there were numerous de novo and inherited events, sometimes in combination in a given family, implicating many novel ASD genes such as SHANK2, SYNGAP1, DLGAP2 and the X-linked DDX53-PTCHD1 locus. We also discovered an enrichment of CNVs disrupting functional gene sets involved in cellular proliferation, projection and motility, and GTPase/Ras signalling. Our results reveal many new genetic and functional targets in ASD that may lead to final connected pathways.

Journal ArticleDOI
TL;DR: It is reported that NETs provide a heretofore unrecognized scaffold and stimulus for thrombus formation and may further explain the epidemiological association of infection with thrombosis.
Abstract: Neutrophil extracellular traps (NETs) are part of the innate immune response to infections. NETs are a meshwork of DNA fibers comprising histones and antimicrobial proteins. Microbes are immobilized in NETs and encounter a locally high and lethal concentration of effector proteins. Recent studies show that NETs are formed inside the vasculature in infections and noninfectious diseases. Here we report that NETs provide a heretofore unrecognized scaffold and stimulus for thrombus formation. NETs perfused with blood caused platelet adhesion, activation, and aggregation. DNase or the anticoagulant heparin dismantled the NET scaffold and prevented thrombus formation. Stimulation of platelets with purified histones was sufficient for aggregation. NETs recruited red blood cells, promoted fibrin deposition, and induced a red thrombus, such as that found in veins. Markers of extracellular DNA traps were detected in a thrombus and plasma of baboons subjected to deep vein thrombosis, an example of inflammation-enhanced thrombosis. Our observations indicate that NETs are a previously unrecognized link between inflammation and thrombosis and may further explain the epidemiological association of infection with thrombosis.

Journal ArticleDOI
TL;DR: The authors conducted four experiments in which subjects read mock news articles that included either a misleading claim from a politician, or misleading claim and a correction, and found that corrections frequently fail to reduce misperceptions among the targeted ideological group.
Abstract: An extensive literature addresses citizen ignorance, but very little research focuses on misperceptions. Can these false or unsubstantiated beliefs about politics be corrected? Previous studies have not tested the efficacy of corrections in a realistic format. We conducted four experiments in which subjects read mock news articles that included either a misleading claim from a politician, or a misleading claim and a correction. Results indicate that corrections frequently fail to reduce misperceptions among the targeted ideological group. We also document several instances of a “backfire effect” in which corrections actually increase misperceptions among the group in question.