scispace - formally typeset
Search or ask a question
Institution

University of Milano-Bicocca

EducationMilan, Italy
About: University of Milano-Bicocca is a education organization based out in Milan, Italy. It is known for research contribution in the topics: Population & Blood pressure. The organization has 8972 authors who have published 22322 publications receiving 620484 citations. The organization is also known as: Università degli Studi di Milano-Bicocca & Universita degli Studi di Milano-Bicocca.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors investigate and compare optical absorption, luminescence and scintillation properties of Pr-doped Y3Al5O12, Lu3Al 5O12, Y2SiO5 and Lu2Si2O5 single crystals for application as scintillators.
Abstract: We investigate and compare optical absorption, luminescence and scintillation properties of Pr-doped Y3Al5O12, Lu3Al5O12, Y2SiO5 and Lu2SiO5 single crystals. The processes determining the kinetics of the fast Pr3+ 5d–4f radiative transition are described. Among the studied host materials, only Lu3Al5O12 presents neither any 5d1–4f luminescence state nonradiative quenching nor Pr3+ ionization at room temperature. We evaluate the figure of merit of all materials for application as scintillators. The most promising system appears to be Lu3Al5O12 : Pr, since it combines an elevated density of 6.67 g cm−3, a fast scintillation response dominated by a 21 ns decay time and a spectrally corrected light yield about 160% with respect to that of Bi4Ge3O12 (BGO).

129 citations

Journal ArticleDOI
S. Chatrchyan1, Khachatryan1, Albert M. Sirunyan1, Armen Tumasyan1  +2267 moreInstitutions (179)
TL;DR: In this paper, the authors compared the QCD prediction with various parton distribution functions to determine the top-quark pole mass, View the MathML sourcemtpole, or the strong coupling constant, αSαS.

128 citations

Journal ArticleDOI
TL;DR: Li et al. as discussed by the authors proposed a two-step GAN-based DA that generates and refines brain Magnetic Resonance (MR) images with/without tumors separately: (i) Progressive Growing of GAN (PGGANs), multi-stage noise-to-image GAN for high-resolution MR image generation, first generates realistic/diverse 256×256 images; (ii) Multimodal UNsupervised Image-toimage Translation (MUNIT) that combines GANs/Variational AutoEncoders or SimGAN that uses a DA-
Abstract: Convolutional Neural Networks (CNNs) achieve excellent computer-assisted diagnosis with sufficient annotated training data. However, most medical imaging datasets are small and fragmented. In this context, Generative Adversarial Networks (GANs) can synthesize realistic/diverse additional training images to fill the data lack in the real image distribution; researchers have improved classification by augmenting data with noise-to-image (e.g., random noise samples to diverse pathological images) or image-to-image GANs (e.g., a benign image to a malignant one). Yet, no research has reported results combining noise-to-image and image-to-image GANs for further performance boost. Therefore, to maximize the DA effect with the GAN combinations, we propose a two-step GAN-based DA that generates and refines brain Magnetic Resonance (MR) images with/without tumors separately: (i) Progressive Growing of GANs (PGGANs), multi-stage noise-to-image GAN for high-resolution MR image generation, first generates realistic/diverse 256×256 images; (ii) Multimodal UNsupervised Image-to-image Translation (MUNIT) that combines GANs/Variational AutoEncoders or SimGAN that uses a DA-focused GAN loss, further refines the texture/shape of the PGGAN-generated images similarly to the real ones. We thoroughly investigate CNN-based tumor classification results, also considering the influence of pre-training on ImageNet and discarding weird-looking GAN-generated images. The results show that, when combined with classic DA, our two-step GAN-based DA can significantly outperform the classic DA alone, in tumor detection (i.e., boosting sensitivity 93.67% to 97.48%) and also in other medical imaging tasks.

128 citations

Journal ArticleDOI
TL;DR: Deeper knowledge of the mechanism leading to amyloid fibrils along with their molecular structure and the molecular interactions responsible for activity of small molecules could supply useful information for the design of new AD therapeutic agents.
Abstract: The progressive production and subsequent accumulation of β-amyloid (Aβ), a proteolytic fragment of the membrane-associated amyloid precursor protein (APP), plays a central role in Alzheimer's Disease (AD). Aβ is released in a soluble form that may be responsible for cognitive dysfunction in the early stages of the disease, then progressively forms oligomeric, multimeric and fibrillar aggregates, triggering neurodegeneration. Eventually, the aggregation and accumulation of Aβ culminates with the formation of extracellular plaques, one of the morphological hallmarks of the disease, detectable post-mortem in AD brains. In this review we report the known structural features of amyloid peptides and fibrils, and we give an overview of all small molecules that have been found to interact with Aβ aggregation. Deeper knowledge of the mechanism leading to amyloid fibrils along with their molecular structure and the molecular interactions responsible for activity of small molecules could supply useful information for the design of new AD therapeutic agents.

128 citations


Authors

Showing all 9226 results

NameH-indexPapersCitations
Carlo Rovelli1461502103550
Giuseppe Mancia1451369139692
Marco Bersanelli142526105135
Teruki Kamon1422034115633
Marco Colonna13951271166
M. I. Martínez134125179885
A. Mennella13246393236
Roberto Salerno132119783409
Federico Ferri132137689337
Marco Paganoni132143888482
Arabella Martelli131131884029
Sandra Malvezzi129132684401
Andrea Massironi129111578457
Marco Pieri129128582914
Cristina Riccardi129162791452
Network Information
Related Institutions (5)
Sapienza University of Rome
155.4K papers, 4.3M citations

97% related

University of Bologna
115.1K papers, 3.4M citations

96% related

University of Padua
114.8K papers, 3.6M citations

96% related

University of Milan
139.7K papers, 4.6M citations

96% related

VU University Amsterdam
75.6K papers, 3.4M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023173
2022349
20212,468
20202,253
20191,906
20181,706