scispace - formally typeset
Search or ask a question
Institution

University of Minnesota

EducationMinneapolis, Minnesota, United States
About: University of Minnesota is a education organization based out in Minneapolis, Minnesota, United States. It is known for research contribution in the topics: Population & Transplantation. The organization has 117432 authors who have published 257986 publications receiving 11944239 citations. The organization is also known as: University of Minnesota, Twin Cities & University of Minnesota-Twin Cities.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a synthesis of Bayesian and sample-reuse approaches to the problem of high structure model selection geared to prediction is presented. But this approach is not suitable for high-dimensional models.
Abstract: This article offers a synthesis of Bayesian and sample-reuse approaches to the problem of high structure model selection geared to prediction. Similar methods are used for low structure models. Nested and nonnested paradigms are discussed and examples given.

940 citations

Journal ArticleDOI
TL;DR: Growing evidence suggests that behavioral addictions resemble substance addictions in many domains, including natural history, phenomenology, tolerance, comorbidity, overlapping genetic contribution, neurobiological mechanisms, and response to treatment, supporting the DSM-V Task Force proposed new category of Addiction and Related Disorders encompassing both substance use disorders and non-substance addictions.
Abstract: Background: Several behaviors, besides psychoactive substance ingestion, produce short-term reward that may engender persistent behavior, despite knowledge of adverse consequences, i.e., diminished...

939 citations

Journal ArticleDOI
TL;DR: To determine the reliability and validity of a patient outcome questionnaire for chronic heart failure, a randomized, double-blind, placebo-controlled, 3-month trial of pimobendan, an investigational medication with inotropic and vasodilator activities, was performed.

939 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a comprehensive global database for forest ecosystems, which includes carbon budget variables (fluxes and stocks), ecosystem traits (e.g., leaf area index, age), as well as ancillary site information such as management regime, climate, and soil characteristics.
Abstract: Terrestrial ecosystems sequester 2.1 Pg of atmospheric carbon annually. A large amount of the terrestrial sink is realized by forests. However, considerable uncertainties remain regarding the fate of this carbon over both short and long timescales. Relevant data to address these uncertainties are being collected at many sites around the world, but syntheses of these data are still sparse. To facilitate future synthesis activities, we have assembled a comprehensive global database for forest ecosystems, which includes carbon budget variables (fluxes and stocks), ecosystem traits (e.g. leaf area index, age), as well as ancillary site information such as management regime, climate, and soil characteristics. This publicly available database can be used to quantify global, regional or biome-specific carbon budgets; to re-examine established relationships; to test emerging hypotheses about ecosystem functioning [e.g. a constant net ecosystem production (NEP) to gross primary production (GPP) ratio]; and as benchmarks for model evaluations. In this paper, we present the first analysis of this database. We discuss the climatic influences on GPP, net primary production (NPP) and NEP and present the CO2 balances for boreal, temperate, and tropical forest biomes based on micrometeorological, ecophysiological, and biometric flux and inventory estimates. Globally, GPP of forests benefited from higher temperatures and precipitation whereas NPP saturated above either a threshold of 1500 mm precipitation or a mean annual temperature of 10 degrees C. The global pattern in NEP was insensitive to climate and is hypothesized to be mainly determined by nonclimatic conditions such as successional stage, management, site history, and site disturbance. In all biomes, closing the CO2 balance required the introduction of substantial biome-specific closure terms. Nonclosure was taken as an indication that respiratory processes, advection, and non-CO2 carbon fluxes are not presently being adequately accounted for.

938 citations

Journal ArticleDOI
TL;DR: Using the Lyapunov theorem in functional analysis, this work rigorously proves a result first discovered by Yu and Lui (2006) that there is a zero duality gap for the continuous (Lebesgue integral) formulation of the discretized version of this nonconvex problem.
Abstract: Consider a communication system whereby multiple users share a common frequency band and must choose their transmit power spectral densities dynamically in response to physical channel conditions. Due to co-channel interference, the achievable data rate of each user depends on not only the power spectral density of its own, but also those of others in the system. Given any channel condition and assuming Gaussian signaling, we consider the problem to jointly determine all users' power spectral densities so as to maximize a system-wide utility function (e.g., weighted sum-rate of all users), subject to individual power constraints. For the discretized version of this nonconvex problem, we characterize its computational complexity by establishing the NP-hardness under various practical settings, and identify subclasses of the problem that are solvable in polynomial time. Moreover, we consider the Lagrangian dual relaxation of this nonconvex problem. Using the Lyapunov theorem in functional analysis, we rigorously prove a result first discovered by Yu and Lui (2006) that there is a zero duality gap for the continuous (Lebesgue integral) formulation. Moreover, we show that the duality gap for the discrete formulation vanishes asymptotically as the size of discretization decreases to zero.

938 citations


Authors

Showing all 118112 results

NameH-indexPapersCitations
Walter C. Willett3342399413322
David J. Hunter2131836207050
David Miller2032573204840
Mark I. McCarthy2001028187898
Dennis W. Dickson1911243148488
David H. Weinberg183700171424
Eric Boerwinkle1831321170971
John C. Morris1831441168413
Aaron R. Folsom1811118134044
H. S. Chen1792401178529
Jie Zhang1784857221720
Jasvinder A. Singh1762382223370
Feng Zhang1721278181865
Gang Chen1673372149819
Hongfang Liu1662356156290
Network Information
Related Institutions (5)
Cornell University
235.5K papers, 12.2M citations

98% related

University of Washington
305.5K papers, 17.7M citations

97% related

University of Pennsylvania
257.6K papers, 14.1M citations

97% related

University of Michigan
342.3K papers, 17.6M citations

97% related

Columbia University
224K papers, 12.8M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023200
20221,176
202111,903
202011,807
201910,984
201810,367