scispace - formally typeset
Search or ask a question
Institution

University of Mons

EducationMons, Belgium
About: University of Mons is a education organization based out in Mons, Belgium. It is known for research contribution in the topics: Large Hadron Collider & Standard Model. The organization has 3073 authors who have published 9465 publications receiving 294776 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is determined that the most important predictor of female sexual functioning is prior level of sexual functioning, and partner-related factors (change in partner status and feelings for partner) also had significant effects.
Abstract: This article uses a prospectively, annually collected sexuality questionnaire from an 8-year study of 340 mid-aged Melbourne women. We modeled the interactions of sexuality domains, the effect of prior level of sexual functioning, and the effects of change in partner-related factors. We found that we were unable to separate items denoting sexual interest from those denoting responsiveness. Using the statistical technique of auto-correlation, we determined that the most important predictor of female sexual functioning is prior level of sexual functioning. Partner-related factors (change in partner status and feelings for partner) also had significant effects.

92 citations

Posted Content
TL;DR: In this paper, the authors compared three state-of-the-art methods of glottal flow estimation: closed-phase inverse filtering, iterative and adaptive inverse filtering and mixed-phase decomposition.
Abstract: Source-tract decomposition (or glottal flow estimation) is one of the basic problems of speech processing. For this, several techniques have been proposed in the literature. However studies comparing different approaches are almost nonexistent. Besides, experiments have been systematically performed either on synthetic speech or on sustained vowels. In this study we compare three of the main representative state-of-the-art methods of glottal flow estimation: closed-phase inverse filtering, iterative and adaptive inverse filtering, and mixed-phase decomposition. These techniques are first submitted to an objective assessment test on synthetic speech signals. Their sensitivity to various factors affecting the estimation quality, as well as their robustness to noise are studied. In a second experiment, their ability to label voice quality (tensed, modal, soft) is studied on a large corpus of real connected speech. It is shown that changes of voice quality are reflected by significant modifications in glottal feature distributions. Techniques based on the mixed-phase decomposition and on a closed-phase inverse filtering process turn out to give the best results on both clean synthetic and real speech signals. On the other hand, iterative and adaptive inverse filtering is recommended in noisy environments for its high robustness.

92 citations

Journal ArticleDOI
TL;DR: This review brings together the studies that have applied cerebellar stimulation, magnetic and electric, and presents an overview of the current knowledge and unsolved issues.
Abstract: Transcranial magnetic and electric stimulation of the brain are novel and highly promising techniques currently employed in both research and clinical practice. Improving or rehabilitating brain functions by modulating excitability with these noninvasive tools is an exciting new area in neuroscience. Since the cerebellum is closely connected with the cerebral regions subserving motor, associative, and affective functions, the cerebello-thalamo-cortical pathways are an interesting target for these new techniques. Targeting the cerebellum represents a novel way to modulate the excitability of remote cortical regions and their functions. This review brings together the studies that have applied cerebellar stimulation, magnetic and electric, and presents an overview of the current knowledge and unsolved issues. Some recommendations for future research are implemented as well.

91 citations

Journal ArticleDOI
TL;DR: The chemical routes for synthesis of iron oxide nanoparticles, the fluid stabilization, and the surface modification of superparamagneticIron oxide particles currently find promising applications in the biomedical field mainly as MRI negative contrast agents.
Abstract: Superparamagnetic iron oxide nanoparticles can be used for numerous applications such as MRI contrast enhancement, hyperthermia, detoxification of biological fluids, drug delivery, or cell separation. In this work, we will summarize the chemical routes for synthesis of iron oxide nanoparticles, the fluid stabilization, and the surface modification of superparamagnetic iron oxide nanoparticles. Some examples of the numerous applications of these particles in the biomedical field mainly as MRI negative contrast agents for tissue-specific imaging, cellular labeling, and molecular imaging will be given. Larger particles or particles displaying a non-neutral surface (thanks to their coating or to a cell transfection agent with which they are mixed) are very useful tools, although the cells to be labeled have no professional phagocytic function. Labeled cells can then be transplanted and monitored by MRI in a broad spectrum of applications. Direct in vivo magnetic labeling of cells is mainly performed by intravenous injection of long-circulating iron oxide-based MRI contrast agents, which can extravasate and/or undergo a cellular uptake in an amount sufficient to allow an MRI visualization of areas of interest such as inflamed regions or tumors. Particles with long circulation times, or able to induce a strong negative effect individually have been also modified by conjugation to a ligand, so that their cellular uptake, or at least their binding to the cell surface, could occur through a specific ligand-receptor interaction, in vivo as well as in vitro. Thus, experimentally as well as in a few trials on humans, iron oxide particles currently find promising applications.

91 citations


Authors

Showing all 3115 results

NameH-indexPapersCitations
Giacomo Bruno1581687124368
Krzysztof Piotrzkowski141126999607
Maria Elena Pol139141499240
Rupert Leitner136120190597
Christophe Delaere135132096742
Vincent Lemaitre134131099190
Jean-Luc Brédas134102685803
Luiz Mundim133141389792
Ulrich Landgraf13195983320
Markus Elsing131111182757
Evangelos Gazis131114784159
Loic Quertenmont12990576221
Michele Selvaggi129121483525
Roberto Castello12896576820
Olivier Bondu128104976124
Network Information
Related Institutions (5)
University of Paris
174.1K papers, 5M citations

92% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

90% related

University of Padua
114.8K papers, 3.6M citations

90% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

90% related

Imperial College London
209.1K papers, 9.3M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202322
202264
2021656
2020716
2019606
2018601