scispace - formally typeset
Search or ask a question
Institution

University of Mons

EducationMons, Belgium
About: University of Mons is a education organization based out in Mons, Belgium. It is known for research contribution in the topics: Large Hadron Collider & Standard Model. The organization has 3073 authors who have published 9465 publications receiving 294776 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This work aims to demonstrate the efforts towards in-situ applicability of nanofiltration techniques to characterize the physical properties of nanoparticles and show their role in the response of various materials to radiolysis.
Abstract: Pathways by Nanoparticles Jens Rauch,† Walter Kolch,*,†,‡ Sophie Laurent, and Morteza Mahmoudi* †Systems Biology Ireland and ‡Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland Department of General, Organic, and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Avenue Maistriau 19, B-7000 Mons, Belgium Nanotechnology Research Center and Department of Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran

144 citations

Journal ArticleDOI
Vardan Khachatryan1, Albert M. Sirunyan1, Armen Tumasyan1, Wolfgang Adam  +2199 moreInstitutions (174)
TL;DR: In this article, an algorithm is defined to identify single-jet objects that originate from the merging of the decay products of W bosons produced with high transverse momenta from jets initiated by single partons.
Abstract: In searches for new physics in the energy regime of the LHC, it is becoming increasingly important to distinguish single-jet objects that originate from the merging of the decay products of W bosons produced with high transverse momenta from jets initiated by single partons. Algorithms are defined to identify such W jets for different signals of interest, using techniques that are also applicable to other decays of bosons to hadrons that result in a single jet, such as those from highly boosted Z and Higgs bosons. The efficiency for tagging W jets is measured in data collected with the CMS detector at a center-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.7 inverse femtobarns. The performance of W tagging in data is compared with predictions from several Monte Carlo simulators.

144 citations

Journal ArticleDOI
TL;DR: In this article, a new type of materials based on ethylene-vinyl acetate copolymers, commercial organo-modified clays (organoclays) and multi-walled carbon nanotubes (MWNTs) has been prepared via direct melt blending.

144 citations

Journal ArticleDOI
TL;DR: It is concluded that the p.h.n. nucleus is involved in the integration processing, and that the m.v. is involved either in the Integration processing or in the relaying of the output of the neural integrator to the oculomotoneurones.
Abstract: 1. This study was intended to test the candidature of the prepositus-vestibular nuclear complex for being the location of the oculomotor neural integrator (Robinson's integrator). 2. Microinjections of kainic acid (2 micrograms dissolved in 1 microliter) were made in awake cats. Injection sites were located either in the prepositus hypoglossi nucleus (p.h.), the medial vestibular nucleus (m.v.n.), the medial longitudinal fasciculus (m.l.f.) or in the magnocellular tegmental field of the reticular formation. 3. Theory predicts that a complete disabling of the neural integrator will cause (a) an exponential post-saccadic drift whose time constant will be 0.16 s in the dark (b) a phase lead of +93 deg as the vestibulo-ocular reflex is tested at 0.10 Hz in the dark and (c) a nearly complete abolition of the optokinetic nystagmus (o.k.n.). 4. About 1 h after a unilateral kainic acid injection in the p.h., we observed (a) a large bilateral post-saccadic drift (time constant sometimes as low as 0.2 s) (b) a large phase lead at 0.10 Hz (range: from +69 to +98 deg) (c) an abolition of the o.k.n. control injection of phosphate buffer in the p.h. did not produce any deficit. 5. A unilateral kainic acid injection in the m.v.n. induced a nystagmus followed by signs of bilateral failure of the neural integrator similar to those observed after kainic acid injection in the p.h. 6. Injection near the mid-line, between the two p.h. nuclei, induced a defect of the neural integrator less than that observed after kainic acid injection in either the p.h. or the m.v.n. Injection of kainic acid in the magnocellular tegmental field of the reticular formation did not produce any sign of failure of the neural integrator. No post-saccadic drift was observed. 7. We have concluded that (a) the p.h. nucleus is involved in the integration processing, and that (b) the m.v.n. is involved either in the integration processing or in the relaying of the output of the neural integrator to the oculomotoneurones.

143 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the organocatalytic depolymerization of poly(ethylene terephthalate) (PET), using a commercially available guanidine catalyst, 1,5,7-triazabicyclo[4.0]dec-5-ene (TBD), which was used and processed with 1.0 mol % (0.7 wt %) of TBD and excess amount of ethylene glycol (EG) at 190 °C for 3.5 hours under atmospheric pressure to give bis(2-
Abstract: We describe the organocatalytic depolymerization of poly(ethylene terephthalate) (PET), using a commercially available guanidine catalyst, 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD). Postconsumer PET beverage bottles were used and processed with 1.0 mol % (0.7 wt %) of TBD and excess amount of ethylene glycol (EG) at 190 °C for 3.5 hours under atmospheric pressure to give bis(2-hydroxyethyl) terephthalate (BHET) in 78% isolated yield. The catalyst efficiency was comparable to other metal acetate/alkoxide catalysts that are commonly used for depolymerization of PET. The BHET content in the glycolysis product was subject to the reagent loading. This catalyst influenced the rate of the depolymerization as well as the effective process temperature. We also demonstrated the recycling of the catalyst and the excess EG for more than 5 cycles. Computational and experimental studies showed that both TBD and EG activate PET through hydrogen bond formation/activation to facilitate this reaction. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011

143 citations


Authors

Showing all 3115 results

NameH-indexPapersCitations
Giacomo Bruno1581687124368
Krzysztof Piotrzkowski141126999607
Maria Elena Pol139141499240
Rupert Leitner136120190597
Christophe Delaere135132096742
Vincent Lemaitre134131099190
Jean-Luc Brédas134102685803
Luiz Mundim133141389792
Ulrich Landgraf13195983320
Markus Elsing131111182757
Evangelos Gazis131114784159
Loic Quertenmont12990576221
Michele Selvaggi129121483525
Roberto Castello12896576820
Olivier Bondu128104976124
Network Information
Related Institutions (5)
University of Paris
174.1K papers, 5M citations

92% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

90% related

University of Padua
114.8K papers, 3.6M citations

90% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

90% related

Imperial College London
209.1K papers, 9.3M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202322
202264
2021656
2020716
2019606
2018601