scispace - formally typeset
Search or ask a question
Institution

University of Münster

EducationMünster, Germany
About: University of Münster is a education organization based out in Münster, Germany. It is known for research contribution in the topics: Population & Catalysis. The organization has 35609 authors who have published 69059 publications receiving 2278534 citations. The organization is also known as: University of Munster & University of Muenster.


Papers
More filters
Journal ArticleDOI
TL;DR: FDG-PET is a sensitive method in the follow-up of thyroid cancer which should be considered in all patients suffering from differentiated thyroid cancer with suspected recurrence and/or metastases, and particularly in those with elevated thyroglobulin values and negative WBS.
Abstract: =222) and the group with negative radioiodine scan (n=166), respectively. Specificity was 90% in the whole patient group. Sensitivity and specificity of WBS were 50% and 99%, respectively. When the results of FDG-PET and WBS were considered in combination, tumour tissue was missed in only 7%. Sensitivity and specificity of MIBI/Tl were 53% and 92%, respectively (n=117). We conclude that FDG-PET is a sensitive method in the follow-up of thyroid cancer which should be considered in all patients suffering from differentiated thyroid cancer with suspected recurrence and/or metastases, and particularly in those with elevated thyroglobulin values and negative WBS.

327 citations

Journal ArticleDOI
21 Apr 2016-Nature
TL;DR: It is shown that Notch signalling in endothelial cells leads to the expansion of haematopoietic stem cell niches in bone, which involves increases in CD31-positive capillaries and platelet-derived growth factor receptor-β (PDGFRβ)-positive perivascular cells, arteriole formation and elevated levels of cellular stem cell factor.
Abstract: Blood vessels define local microenvironments in the skeletal system, play crucial roles in osteogenesis and provide niches for haematopoietic stem cells. The properties of niche-forming vessels and their changes in the ageing organism remain incompletely understood. Here we show that Notch signalling in endothelial cells leads to the expansion of haematopoietic stem cell niches in bone, which involves increases in CD31-positive capillaries and platelet-derived growth factor receptor-β (PDGFRβ)-positive perivascular cells, arteriole formation and elevated levels of cellular stem cell factor. Although endothelial hypoxia-inducible factor signalling promotes some of these changes, it fails to enhance vascular niche function because of a lack of arterialization and expansion of PDGFRβ-positive cells. In ageing mice, niche-forming vessels in the skeletal system are strongly reduced but can be restored by activation of endothelial Notch signalling. These findings indicate that vascular niches for haematopoietic stem cells are part of complex, age-dependent microenvironments involving multiple cell populations and vessel subtypes.

327 citations

Journal ArticleDOI
TL;DR: Full-sequence rotary instrumentation was associated with less debris extrusion compared with the use of reciprocating single-file systems and rotary and reciprocating nickel-titanium instrumentation systems.

327 citations

Journal ArticleDOI
TL;DR: The 400 million-year-old Rhynie chert has provided a wealth of information not only of early land plants, but also of the fungi that inhabited this paleoecosystem.
Abstract: The 400 million-year-old Rhynie chert has provided a wealth of information not only of early land plants, but also of the fungi that inhabited this paleoecosystem. In this paper we report t...

327 citations


Authors

Showing all 36075 results

NameH-indexPapersCitations
Hyun-Chul Kim1764076183227
Klaus Müllen1642125140748
Giacomo Bruno1581687124368
Anders M. Dale156823133891
Holger J. Schünemann141810113169
Joachim Heinrich136130976887
Markus Merschmeyer132118884975
Klaus Ley12949557964
Robert W. Mahley12836360774
Robert J. Kurman12739760277
Bart Barlogie12677957803
Thomas Schwarz12370154560
Carlos Caldas12254773840
Klaus Weber12152460346
Andrey L. Rogach11757646820
Network Information
Related Institutions (5)
Ludwig Maximilian University of Munich
161.5K papers, 5.7M citations

96% related

University of Zurich
124K papers, 5.3M citations

96% related

University of Amsterdam
140.8K papers, 5.9M citations

95% related

University of Pittsburgh
201K papers, 9.6M citations

95% related

University of California, Irvine
113.6K papers, 5.5M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023253
2022831
20213,683
20203,499
20193,236
20182,918