scispace - formally typeset
Search or ask a question
Institution

University of Nebraska–Lincoln

EducationLincoln, Nebraska, United States
About: University of Nebraska–Lincoln is a education organization based out in Lincoln, Nebraska, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 28059 authors who have published 61544 publications receiving 2139104 citations. The organization is also known as: Nebraska & UNL.


Papers
More filters
Journal ArticleDOI
TL;DR: This article explored four categories within secondary teacher attitudes toward ELL inclusion: (a) English language learners inclusion, (b) coursework modification for ELLS, (c) professional development for working with ELLs, and (d) perceptions of language and language learning.
Abstract: Researchers have given limited attention to teacher attitudes toward inclusion of English-language learners (ELLs) in mainstream classrooms. The author explored 4 categories within secondary teacher attitudes toward ELL inclusion: (a) ELL inclusion, (b) coursework modification for ELLS, (c) professional development for working with ELLs, and (d) perceptions of language and language learning. Findings from a survey of 279 subject-area high school teachers indicate a neutral to slightly positive attitude toward ELL inclusion, a somewhat positive attitude toward coursework modification, a neutral attitude toward professional development for working with ELLs, and educator misconceptions regarding how second languages are learned.

404 citations

Journal ArticleDOI
TL;DR: The photovoltaic devices with 2D/3D stacking structures show much improved stability in comparison to their 3D counterparts when subjected to heat stress tests and the conversion of defective surface into 2D layers also induces passivation of the 3D perovskites resulting in an enhanced efficiency.
Abstract: Two-dimensional (2D) perovskites have been shown to be more stable than their three-dimensional (3D) counterparts due to the protection of the organic ligands. Herein a method is introduced to form 2D/3D stacking structures by the reaction of 3D perovskite with n-Butylamine (BA). Different from regular treatment with n-Butylammonium iodide (BAI) where 2D perovskite with various layers form, the reaction of BA with MAPbI3 only produce (BA)2PbI4, which has better protection due to more organic ligands in (BA)2PbI4 than the mixture of 2D perovskites. Compared to BAI treatment, BA treatment results in smoother 2D perovskite layer on 3D perovskites with a better coverage. The photovoltaic devices with 2D/3D stacking structures show much improved stability in comparison to their 3D counterparts when subjected to heat stress tests. Moreover, the conversion of defective surface into 2D layers also induces passivation of the 3D perovskites resulting in an enhanced efficiency.

404 citations

Journal ArticleDOI
TL;DR: In this article, the authors develop and test a model of the relationship between norms of information sharing and communication flows of frequency, bidirectionality, and formality, assessing the quality of communication and satisfaction with communication.

404 citations

Journal ArticleDOI
P. Abreu1, Marco Aglietta2, Eun-Joo Ahn3, D. Allard  +492 moreInstitutions (68)
TL;DR: In this paper, anisotropy was measured by the fraction of arrival directions that are less than 3.1 degrees from the position of an active galactic nucleus within 75 Mpc (using the Veron-Cetty and Veron 12th catalog).

404 citations

Journal ArticleDOI
TL;DR: This report examines the role of four DCLs, two AGOs, one DRB, and one RDR in controlling viral RNA accumulation in infected Arabidopsis plants by using a mutant virus lacking its silencing suppressor to resolve several key steps in the antiviral RNA silencing pathway.
Abstract: Plant RNA silencing machinery enlists four primary classes of proteins to achieve sequence-specific regulation of gene expression and mount an antiviral defense. These include Dicer-like ribonucleases (DCLs), Argonaute proteins (AGOs), dsRNA-binding proteins (DRBs), and RNA-dependent RNA polymerases (RDRs). Although at least four distinct endogenous RNA silencing pathways have been thoroughly characterized, a detailed understanding of the antiviral RNA silencing pathway is just emerging. In this report, we have examined the role of four DCLs, two AGOs, one DRB, and one RDR in controlling viral RNA accumulation in infected Arabidopsis plants by using a mutant virus lacking its silencing suppressor. Our results show that all four DCLs contribute to antiviral RNA silencing. We confirm previous reports implicating both DCL4 and DCL2 in this process and establish a minor role for DCL3. Surprisingly, we found that DCL1 represses antiviral RNA silencing through negatively regulating the expression of DCL4 and DCL3. We also implicate DRB4 in antiviral RNA silencing. Finally, we show that both AGO1 and AGO7 function to ensure efficient clearance of viral RNAs and establish that AGO1 is capable of targeting viral RNAs with more compact structures, whereas AGO7 and RDR6 favor less structured RNA targets. Our results resolve several key steps in the antiviral RNA silencing pathway and provide a basis for further in-depth analysis.

403 citations


Authors

Showing all 28272 results

NameH-indexPapersCitations
Donald P. Schneider2421622263641
Suvadeep Bose154960129071
David D'Enterria1501592116210
Aaron Dominguez1471968113224
Gregory R Snow1471704115677
J. S. Keller14498198249
Andrew Askew140149699635
Mitchell Wayne1391810108776
Kenneth Bloom1381958110129
P. de Barbaro1371657102360
Randy Ruchti1371832107846
Ia Iashvili135167699461
Yuichi Kubota133169598570
Ilya Kravchenko132136693639
Andrea Perrotta131138085669
Network Information
Related Institutions (5)
University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

95% related

Pennsylvania State University
196.8K papers, 8.3M citations

95% related

University of Minnesota
257.9K papers, 11.9M citations

94% related

University of California, Davis
180K papers, 8M citations

94% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202393
2022381
20212,809
20202,977
20192,846
20182,854