scispace - formally typeset
Search or ask a question
Institution

University of Nebraska–Lincoln

EducationLincoln, Nebraska, United States
About: University of Nebraska–Lincoln is a education organization based out in Lincoln, Nebraska, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 28059 authors who have published 61544 publications receiving 2139104 citations. The organization is also known as: Nebraska & UNL.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors compared light reflectance from corn leaves with other parameters used to detect N deficiencies in the field, and found that reflectance near 550 nm was the best wavelength to separate N treatment differences.
Abstract: New tools that can rapidly quantify the N status of corn could be valuable in N fertilizer management practices. This study was conducted to compare light reflectance from corn leaves with other parameters used to detect N deficiencies. Light reflectance (400-700 nm) as measured from corn leaves in the laboratory with a Hunter tristimulus colorimeter was compared with Minolta SPAD 502 chlorophyll meter readings (light transmittance at 650 and 940 nm), leaf N concentrations, and specific leaf N (N content per unit area). Measurements were made on individual ear leaves collected from an irrigated corn N response trial with four hybrids and have N treatments. Light reflectance near 550 nm was the best wavelength to separate N treatment differences. Reflectance at 550 nm provided a stronger relationship with both leaf N concentration and chlorophyll meter reading than between chlorophyll meter readings and leaf N concentration. The measurement of light reflectance near 550 nm has promise as a technique to detect N deficiencies in corn leaves

337 citations

Journal ArticleDOI
16 Nov 2001-Science
TL;DR: In the highly cross-linked polymer, an effective magnetic moment corresponding to an average S of about 5000 and slow reorientation of the magnetization by a small magnetic field below a temperature of about 10 kelvin are found.
Abstract: We describe preparation and magnetic properties of an organic pi-conjugated polymer with very large magnetic moment and magnetic order at low temperatures. The polymer is designed with a large density of cross-links and alternating connectivity of radical modules with unequal spin quantum numbers (S), macrocyclic S = 2 and, cross-linking S = (1/2) modules, which permits large net S values for either ferromagnetic or antiferromagnetic exchange couplings between the modules. In the highly cross-linked polymer, an effective magnetic moment corresponding to an average S of about 5000 and slow reorientation of the magnetization by a small magnetic field (less than or equal to 1 oersted) below a temperature of about 10 kelvin are found. Qualitatively, this magnetic behavior is comparable to that of insulating spin glasses and blocked superparamagnets.

336 citations

Journal ArticleDOI
TL;DR: Insights into the acclimatization response of lowland animals to high-altitude hypoxia can provide a basis for predicting how altitudinal range limits might shift in response to climate change.
Abstract: High-altitude environments provide ideal testing grounds for investigations of mechanism and process in physiological adaptation. In vertebrates, much of our understanding of the acclimatization response to high-altitude hypoxia derives from studies of animal species that are native to lowland environments. Such studies can indicate whether phenotypic plasticity will generally facilitate or impede adaptation to high altitude. Here, we review general mechanisms of physiological acclimatization and genetic adaptation to high-altitude hypoxia in birds and mammals. We evaluate whether the acclimatization response to environmental hypoxia can be regarded generally as a mechanism of adaptive phenotypic plasticity, or whether it might sometimes represent a misdirected response that acts as a hindrance to genetic adaptation. In cases in which the acclimatization response to hypoxia is maladaptive, selection will favor an attenuation of the induced phenotypic change. This can result in a form of cryptic adaptive evolution in which phenotypic similarity between high- and low-altitude populations is attributable to directional selection on genetically based trait variation that offsets environmentally induced changes. The blunted erythropoietic and pulmonary vasoconstriction responses to hypoxia in Tibetan humans and numerous high-altitude birds and mammals provide possible examples of this phenomenon. When lowland animals colonize high-altitude environments, adaptive phenotypic plasticity can mitigate the costs of selection, thereby enhancing prospects for population establishment and persistence. By contrast, maladaptive plasticity has the opposite effect. Thus, insights into the acclimatization response of lowland animals to high-altitude hypoxia can provide a basis for predicting how altitudinal range limits might shift in response to climate change.

336 citations

Journal ArticleDOI
29 Jan 2013-PLOS ONE
TL;DR: Evidence of non-transivity, year-to-year variation and induction of detoxication enzymes indicates that pesticide interactions in bees may be as complex as drug interactions in mammals.
Abstract: Background Chemical analysis shows that honey bees (Apis mellifera) and hive products contain many pesticides derived from various sources. The most abundant pesticides are acaricides applied by beekeepers to control Varroa destructor. Beekeepers also apply antimicrobial drugs to control bacterial and microsporidial diseases. Fungicides may enter the hive when applied to nearby flowering crops. Acaricides, antimicrobial drugs and fungicides are not highly toxic to bees alone, but in combination there is potential for heightened toxicity due to interactive effects.

336 citations

Journal ArticleDOI
TL;DR: A simple yet effective meniscus-assisted solution printing (MASP) strategy to yield large-grained dense perovskite film with good crystallization and preferred orientation that exhibits excellent optoelectronic properties with efficiencies approaching 20% in planar perovkite solar cells.
Abstract: Control over morphology and crystallinity of metal halide perovskite films is of key importance to enable high-performance optoelectronics. However, this remains particularly challenging for solution-printed devices due to the complex crystallization kinetics of semiconductor materials within dynamic flow of inks. Here we report a simple yet effective meniscus-assisted solution printing (MASP) strategy to yield large-grained dense perovskite film with good crystallization and preferred orientation. Intriguingly, the outward convective flow triggered by fast solvent evaporation at the edge of the meniscus ink imparts the transport of perovskite solutes, thus facilitating the growth of micrometre-scale perovskite grains. The growth kinetics of perovskite crystals is scrutinized by in situ optical microscopy tracking to understand the crystallization mechanism. The perovskite films produced by MASP exhibit excellent optoelectronic properties with efficiencies approaching 20% in planar perovskite solar cells. This robust MASP strategy may in principle be easily extended to craft other solution-printed perovskite-based optoelectronics.

335 citations


Authors

Showing all 28272 results

NameH-indexPapersCitations
Donald P. Schneider2421622263641
Suvadeep Bose154960129071
David D'Enterria1501592116210
Aaron Dominguez1471968113224
Gregory R Snow1471704115677
J. S. Keller14498198249
Andrew Askew140149699635
Mitchell Wayne1391810108776
Kenneth Bloom1381958110129
P. de Barbaro1371657102360
Randy Ruchti1371832107846
Ia Iashvili135167699461
Yuichi Kubota133169598570
Ilya Kravchenko132136693639
Andrea Perrotta131138085669
Network Information
Related Institutions (5)
University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

95% related

Pennsylvania State University
196.8K papers, 8.3M citations

95% related

University of Minnesota
257.9K papers, 11.9M citations

94% related

University of California, Davis
180K papers, 8M citations

94% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202393
2022381
20212,809
20202,977
20192,846
20182,854