scispace - formally typeset
Search or ask a question
Institution

University of Nebraska–Lincoln

EducationLincoln, Nebraska, United States
About: University of Nebraska–Lincoln is a education organization based out in Lincoln, Nebraska, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 28059 authors who have published 61544 publications receiving 2139104 citations. The organization is also known as: Nebraska & UNL.


Papers
More filters
Journal ArticleDOI
TL;DR: Key priorities are to improve technologies and policies that promote more ecologically efficient food production while optimizing the allocation of lands to conservation and agriculture.
Abstract: The human population is projected to reach 11 billion this century, with the greatest increases in tropical developing nations. This growth, in concert with rising per-capita consumption, will require large increases in food and biofuel production. How will these megatrends affect tropical terrestrial and aquatic ecosystems and biodiversity? We foresee (i) major expansion and intensification of tropical agriculture, especially in Sub-Saharan Africa and South America; (ii) continuing rapid loss and alteration of tropical old-growth forests, woodlands, and semi-arid environments; (iii) a pivotal role for new roadways in determining the spatial extent of agriculture; and (iv) intensified conflicts between food production and nature conservation. Key priorities are to improve technologies and policies that promote more ecologically efficient food production while optimizing the allocation of lands to conservation and agriculture.

1,066 citations

Book
01 Jan 2008
TL;DR: This book covers the fundamental concepts of data mining, to demonstrate the potential of gathering large sets of data, and analyzing these data sets to gain useful business understanding.
Abstract: This book covers the fundamental concepts of data mining, to demonstrate the potential of gathering large sets of data, and analyzing these data sets to gain useful business understanding. The book is organized in three parts. Part I introduces concepts. Part II describes and demonstrates basic data mining algorithms. It also contains chapters on a number of different techniques often used in data mining. Part III focusses on business applications of data mining.Methods are presented with simple examples, applications are reviewed, and relativ advantages are evaluated.

1,065 citations

Journal ArticleDOI
25 Jun 2004-Science
TL;DR: In this article, Dzenis discusses the process of nanofiber electrospinning, in which continuous threads of polymers or ceramic precursors are emitted from a liquid surface as thin jets.
Abstract: Carbon nanotubes are attracting a lot of attention as the building blocks of nanotechnology. But nanotubes are difficult to align and process into useful materials. In his Perspective, Dzenis discusses the process of nanofiber electrospinning, in which continuous threads of polymers or ceramic precursors are emitted from a liquid surface as thin jets. These continuous nanofibers may offer an alternative for new nanotechnology applications.

1,065 citations

Journal ArticleDOI
01 May 2018
TL;DR: In this article, a universal design principle was proposed to evaluate the catalytic activity of single-atom catalysts for electrochemical reactions, which is a key to future renewable energy technology.
Abstract: Developing highly active single-atom catalysts for electrochemical reactions is a key to future renewable energy technology. Here we present a universal design principle to evaluate the activity of graphene-based single-atom catalysts towards the oxygen reduction, oxygen evolution and hydrogen evolution reactions. Our results indicate that the catalytic activity of single-atom catalysts is highly correlated with the local environment of the metal centre, namely its coordination number and electronegativity and the electronegativity of the nearest neighbour atoms, validated by available experimental data. More importantly, we reveal that this design principle can be extended to metal–macrocycle complexes. The principle not only offers a strategy to design highly active nonprecious metal single-atom catalysts with specific active centres, for example, Fe-pyridine/pyrrole-N4 for the oxygen reduction reaction; Co-pyrrole-N4 for the oxygen evolution reaction; and Mn-pyrrole-N4 for the hydrogen evolution reaction to replace precious Pt/Ir/Ru-based catalysts, but also suggests that macrocyclic metal complexes could be used as an alternative to graphene-based single-atom catalysts.

1,052 citations


Authors

Showing all 28272 results

NameH-indexPapersCitations
Donald P. Schneider2421622263641
Suvadeep Bose154960129071
David D'Enterria1501592116210
Aaron Dominguez1471968113224
Gregory R Snow1471704115677
J. S. Keller14498198249
Andrew Askew140149699635
Mitchell Wayne1391810108776
Kenneth Bloom1381958110129
P. de Barbaro1371657102360
Randy Ruchti1371832107846
Ia Iashvili135167699461
Yuichi Kubota133169598570
Ilya Kravchenko132136693639
Andrea Perrotta131138085669
Network Information
Related Institutions (5)
University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

95% related

Pennsylvania State University
196.8K papers, 8.3M citations

95% related

University of Minnesota
257.9K papers, 11.9M citations

94% related

University of California, Davis
180K papers, 8M citations

94% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202393
2022381
20212,809
20202,977
20192,846
20182,854