scispace - formally typeset
Search or ask a question
Institution

University of Nebraska–Lincoln

EducationLincoln, Nebraska, United States
About: University of Nebraska–Lincoln is a education organization based out in Lincoln, Nebraska, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 28059 authors who have published 61544 publications receiving 2139104 citations. The organization is also known as: Nebraska & UNL.


Papers
More filters
Patent
05 Jun 2007
TL;DR: In this article, a modified variant of Dicamba monooxygenase (DMO) was proposed and found to exhibit high levels of tolerance to the herbicide dicamba.
Abstract: The invention provides a modified variant of dicamba monooxygenase (DMO). The invention relates to the unexpected finding that cells expressing this DMO exhibit high levels of tolerance to the herbicide dicamba. Compositions comprising DMO-encoding nucleic acids and methods of use are provided.

701 citations

Journal ArticleDOI
20 Feb 2020-Nature
TL;DR: It is shown that spreading of an impinged water droplet on the device bridges the originally disconnected components into a closed-loop electrical system, transforming the conventional interfacial effect into a bulk effect, and so enhancing the instantaneous power density by several orders of magnitude over equivalent devices that are limited by interfacial effects.
Abstract: Extensive efforts have been made to harvest energy from water in the form of raindrops1–6, river and ocean waves7,8, tides9 and others10–17. However, achieving a high density of electrical power generation is challenging. Traditional hydraulic power generation mainly uses electromagnetic generators that are heavy, bulky, and become inefficient with low water supply. An alternative, the water-droplet/solid-based triboelectric nanogenerator, has so far generated peak power densities of less than one watt per square metre, owing to the limitations imposed by interfacial effects—as seen in characterizations of the charge generation and transfer that occur at solid–liquid1–4 or liquid–liquid5,18 interfaces. Here we develop a device to harvest energy from impinging water droplets by using an architecture that comprises a polytetrafluoroethylene film on an indium tin oxide substrate plus an aluminium electrode. We show that spreading of an impinged water droplet on the device bridges the originally disconnected components into a closed-loop electrical system, transforming the conventional interfacial effect into a bulk effect, and so enhancing the instantaneous power density by several orders of magnitude over equivalent devices that are limited by interfacial effects. A device involving a polytetrafluoroethylene film, an indium tin oxide substrate and an aluminium electrode allows improved electricity generation from water droplets, which bridge the previously disconnected circuit components.

699 citations

Journal ArticleDOI
TL;DR: A new tool is introduced that rapidly and accurately identifies CRISPRs in large DNA strings, such as genomes and metagenomes, using a simple sequential scan of a DNA sequence and detects repeats directly without any major conversion or preprocessing of the input.
Abstract: Clustered Regularly Interspaced Palindromic Repeats (CRISPRs) are a novel type of direct repeat found in a wide range of bacteria and archaea. CRISPRs are beginning to attract attention because of their proposed mechanism; that is, defending their hosts against invading extrachromosomal elements such as viruses. Existing repeat detection tools do a poor job of identifying CRISPRs due to the presence of unique spacer sequences separating the repeats. In this study, a new tool, CRT, is introduced that rapidly and accurately identifies CRISPRs in large DNA strings, such as genomes and metagenomes. CRT was compared to CRISPR detection tools, Patscan and Pilercr. In terms of correctness, CRT was shown to be very reliable, demonstrating significant improvements over Patscan for measures precision, recall and quality. When compared to Pilercr, CRT showed improved performance for recall and quality. In terms of speed, CRT proved to be a huge improvement over Patscan. Both CRT and Pilercr were comparable in speed, however CRT was faster for genomes containing large numbers of repeats. In this paper a new tool was introduced for the automatic detection of CRISPR elements. This tool, CRT, showed some important improvements over current techniques for CRISPR identification. CRT's approach to detecting repetitive sequences is straightforward. It uses a simple sequential scan of a DNA sequence and detects repeats directly without any major conversion or preprocessing of the input. This leads to a program that is easy to describe and understand; yet it is very accurate, fast and memory efficient, being O(n) in space and O(nm/l) in time.

698 citations

Journal ArticleDOI
TL;DR: In this paper, a new formulation for the angular distribution and the polarization of light excited by atomic and electronic collisions and modulated in time by the action of internal and external fields is presented.
Abstract: A new formulation is presented for the angular distribution and the polarization of light excited by atomic and electronic collisions and modulated in time by the action of internal and external fields. The formulation disentangles geometrical and dynamical effects and stresses the extraction of data on the alignment and orientation of radiating atoms from observations of the emitted light. The treatment is set in the context of recent experimental and theoretical literature and points to new avenues of research.

696 citations

Journal ArticleDOI
TL;DR: Understanding of the reaction mechanisms of B12 enzymes has been greatly enhanced by the availability of large amounts of enzyme that have afforded detailed structure-function studies, and these recent advances are the subject of this review.
Abstract: Vitamin B12 is a complex organometallic cofactor associated with three subfamilies of enzymes: the adenosylcobalamin-dependent isomerases, the methylcobalamin-dependent methyltransferases, and the dehalogenases. Different chemical aspects of the cofactor are exploited during catalysis by the isomerases and the methyltransferases. Thus, the cobalt-carbon bond ruptures homolytically in the isomerases, whereas it is cleaved heterolytically in the methyltransferases. The reaction mechanism of the dehalogenases, the most recently discovered class of B12 enzymes, is poorly understood. Over the past decade our understanding of the reaction mechanisms of B12 enzymes has been greatly enhanced by the availability of large amounts of enzyme that have afforded detailed structure-function studies, and these recent advances are the subject of this review.

692 citations


Authors

Showing all 28272 results

NameH-indexPapersCitations
Donald P. Schneider2421622263641
Suvadeep Bose154960129071
David D'Enterria1501592116210
Aaron Dominguez1471968113224
Gregory R Snow1471704115677
J. S. Keller14498198249
Andrew Askew140149699635
Mitchell Wayne1391810108776
Kenneth Bloom1381958110129
P. de Barbaro1371657102360
Randy Ruchti1371832107846
Ia Iashvili135167699461
Yuichi Kubota133169598570
Ilya Kravchenko132136693639
Andrea Perrotta131138085669
Network Information
Related Institutions (5)
University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

95% related

Pennsylvania State University
196.8K papers, 8.3M citations

95% related

University of Minnesota
257.9K papers, 11.9M citations

94% related

University of California, Davis
180K papers, 8M citations

94% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202393
2022381
20212,809
20202,977
20192,846
20182,854