scispace - formally typeset
Search or ask a question
Institution

University of Nebraska–Lincoln

EducationLincoln, Nebraska, United States
About: University of Nebraska–Lincoln is a education organization based out in Lincoln, Nebraska, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 28059 authors who have published 61544 publications receiving 2139104 citations. The organization is also known as: Nebraska & UNL.


Papers
More filters
Journal ArticleDOI
06 Oct 1988-Nature
TL;DR: The c-mos proto-oncogene is expressed as a maternal mRNA in oocytes and early embryos of Xenopus laevis, but its translation product pp39mos is detectable only during progesterone-induced oocyte maturation, indicating that it functions during reinitiation of meiotic division.
Abstract: The c-mos proto-oncogene is expressed as a maternal mRNA in oocytes and early embryos of Xenopus laevis, but its translation product pp39mos is detectable only during progesterone-induced oocyte maturation. Microinjection of mos-specific antisense oligonucleotides into oocytes not only prevents expression ofpp39mos, but also blocks germinal vesicle breakdown, indicating that it functions during reinitiation of meiotic division.

573 citations

Journal ArticleDOI
TL;DR: It is shown that the OIHP films fabricated by existing methods are strained and that strain is caused by mismatched thermal expansion of perovskite films and substrates during the thermal annealing process.
Abstract: Organic-inorganic hybrid perovskite (OIHP) solar cells have achieved comparable efficiencies to those of commercial solar cells, although their instability hinders their commercialization. Although encapsulation techniques have been developed to protect OIHP solar cells from external stimuli such as moisture, oxygen, and ultraviolet light, understanding of the origin of the intrinsic instability of perovskite films is needed to improve their stability. We show that the OIHP films fabricated by existing methods are strained and that strain is caused by mismatched thermal expansion of perovskite films and substrates during the thermal annealing process. The polycrystalline films have compressive strain in the out-of-plane direction and in-plane tensile strain. The strain accelerates degradation of perovskite films under illumination, which can be explained by increased ion migration in strained OIHP films. This study points out an avenue to enhance the intrinsic stability of perovskite films and solar cells by reducing residual strain in perovskite films.

572 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the surface reactivity of cobalt oxides in low energy electron diffraction (LEED) and X-ray photoelectron spectroscopy.
Abstract: Cobalt oxides comprise two readily accessible cation oxidation states: Co 2+ and Co 3+ , which are thermodynamically competitive under common ambient conditions, and redox mechanisms connecting the two states are largely responsible for their success in partial oxidation catalysis. In our studies, CoO(1 0 0), Co 3 O 4 (1 1 0), and Co 3 O 4 (1 1 1) single crystal substrates have been investigated with X-ray photoelectron spectroscopy (XPS), high-resolution electron energy loss spectroscopy (HREELS), and low energy electron diffraction (LEED) for their surface reactivity toward O 2 and H 2 O and for their stability under reducing UHV conditions. There is facile inter-conversion between CoO and Co 3 O 4 stoichiometry at the oxide surface which, despite the compositional variability, remains well ordered in long-range structure. Surface impurities, however, can pin the surface at either CoO or Co 3 O 4 compositional extremes. Contrary to reports of a pressure gap that creates difficulty in oxide hydroxylation under UHV, it is pos sible to hydroxylate both cobalt monoxide and spinel oxide substrates with H 2 O, provided sufficient activation is available to dis sociate the water molecule.

571 citations

Journal ArticleDOI
TL;DR: In this paper, the advantages of using latent profile analysis (LPA) over other traditional techniques (such as multiple regression and cluster analysis) when analyzing multidimensional data like achievement goals are discussed.

570 citations

Journal ArticleDOI
TL;DR: In this article, the performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at the LHC in 2010.
Abstract: The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta)<2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.

568 citations


Authors

Showing all 28272 results

NameH-indexPapersCitations
Donald P. Schneider2421622263641
Suvadeep Bose154960129071
David D'Enterria1501592116210
Aaron Dominguez1471968113224
Gregory R Snow1471704115677
J. S. Keller14498198249
Andrew Askew140149699635
Mitchell Wayne1391810108776
Kenneth Bloom1381958110129
P. de Barbaro1371657102360
Randy Ruchti1371832107846
Ia Iashvili135167699461
Yuichi Kubota133169598570
Ilya Kravchenko132136693639
Andrea Perrotta131138085669
Network Information
Related Institutions (5)
University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

95% related

Pennsylvania State University
196.8K papers, 8.3M citations

95% related

University of Minnesota
257.9K papers, 11.9M citations

94% related

University of California, Davis
180K papers, 8M citations

94% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202393
2022381
20212,809
20202,977
20192,846
20182,854