scispace - formally typeset
Search or ask a question
Institution

University of Neuchâtel

EducationNeuchâtel, Switzerland
About: University of Neuchâtel is a education organization based out in Neuchâtel, Switzerland. It is known for research contribution in the topics: Laser & Ruthenium. The organization has 2163 authors who have published 4052 publications receiving 123919 citations. The organization is also known as: Université de Neuchâtel & University of Neuchatel.


Papers
More filters
Journal ArticleDOI
TL;DR: A perspective on the context and evolutionary significance of hybridization during speciation is offered, highlighting issues of current interest and debate and suggesting that the Dobzhansky–Muller model of hybrid incompatibilities requires a broader interpretation.
Abstract: Hybridization has many and varied impacts on the process of speciation. Hybridization may slow or reverse differentiation by allowing gene flow and recombination. It may accelerate speciation via adaptive introgression or cause near-instantaneous speciation by allopolyploidization. It may have multiple effects at different stages and in different spatial contexts within a single speciation event. We offer a perspective on the context and evolutionary significance of hybridization during speciation, highlighting issues of current interest and debate. In secondary contact zones, it is uncertain if barriers to gene flow will be strengthened or broken down due to recombination and gene flow. Theory and empirical evidence suggest the latter is more likely, except within and around strongly selected genomic regions. Hybridization may contribute to speciation through the formation of new hybrid taxa, whereas introgression of a few loci may promote adaptive divergence and so facilitate speciation. Gene regulatory networks, epigenetic effects and the evolution of selfish genetic material in the genome suggest that the Dobzhansky-Muller model of hybrid incompatibilities requires a broader interpretation. Finally, although the incidence of reinforcement remains uncertain, this and other interactions in areas of sympatry may have knock-on effects on speciation both within and outside regions of hybridization.

1,715 citations

Journal ArticleDOI
25 Jun 1998-Nature
TL;DR: In this paper, it was shown that γ-ray bursts are sensitive to an energy dispersion predicted by some approaches to quantum gravity, which is sufficient to test theories of quantum gravity.
Abstract: The recent confirmation that at least some γ-ray bursts originate at cosmological distances1,2,3,4 suggests that the radiation from them could be used to probe some of the fundamental laws of physics. Here we show that γ-ray bursts will be sensitive to an energy dispersion predicted by some approaches to quantum gravity. Many of the bursts have structure on relatively rapid timescales5, which means that in principle it is possible to look for energy-dependent dispersion of the radiation, manifested in the arrival times of the photons, if several different energy bands are observed simultaneously. A simple estimate indicates that, because of their high energies and distant origin, observations of these bursts should be sensitive to a dispersion scale that is comparable to the Planck energy scale (∼1019 GeV), which is sufficient to test theories of quantum gravity. Such observations are already possible using existing γ-ray burst detectors.

1,322 citations

Journal ArticleDOI
30 Jul 1999-Science
TL;DR: The advantages and limitations of photovoltaic solar modules for energy generation are reviewed with their operation principles and physical efficiency limits, and recent developments suggest that thin-film crystalline silicon (especially microcrystalline silicon) is becoming a prime candidate for future photov electricity generation.
Abstract: The advantages and limitations of photovoltaic solar modules for energy generation are reviewed with their operation principles and physical efficiency limits. Although the main materials currently used or investigated and the associated fabrication technologies are individually described, emphasis is on silicon-based solar cells. Wafer-based crystalline silicon solar modules dominate in terms of production, but amorphous silicon solar cells have the potential to undercut costs owing, for example, to the roll-to-roll production possibilities for modules. Recent developments suggest that thin-film crystalline silicon (especially microcrystalline silicon) is becoming a prime candidate for future photovoltaics.

1,177 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the global literature explores these risks and show a growing body of evidence that persistent, low concentrations of these insecticides pose serious risks of undesirable environmental impacts.
Abstract: Since their discovery in the late 1980s, neonicotinoid pesticides have become the most widely used class of insecticides worldwide, with large-scale applications ranging from plant protection (crops, vegetables, fruits), veterinary products, and biocides to invertebrate pest control in fish farming. In this review, we address the phenyl-pyrazole fipronil together with neonicotinoids because of similarities in their toxicity, physicochemical profiles, and presence in the environment. Neonicotinoids and fipronil currently account for approximately one third of the world insecticide market; the annual world production of the archetype neonicotinoid, imidacloprid, was estimated to be ca. 20,000 tonnes active substance in 2010. There were several reasons for the initial success of neonicotinoids and fipronil: (1) there was no known pesticide resistance in target pests, mainly because of their recent development, (2) their physicochemical properties included many advantages over previous generations of insecticides (i.e., organophosphates, carbamates, pyrethroids, etc.), and (3) they shared an assumed reduced operator and consumer risk. Due to their systemic nature, they are taken up by the roots or leaves and translocated to all parts of the plant, which, in turn, makes them effectively toxic to herbivorous insects. The toxicity persists for a variable period of time—depending on the plant, its growth stage, and the amount of pesticide applied. A wide variety of applications are available, including the most common prophylactic non-Good Agricultural Practices (GAP) application by seed coating. As a result of their extensive use and physicochemical properties, these substances can be found in all environmental compartments including soil, water, and air. Neonicotinoids and fipronil operate by disrupting neural transmission in the central nervous system of invertebrates. Neonicotinoids mimic the action of neurotransmitters, while fipronil inhibits neuronal receptors. In doing so, they continuously stimulate neurons leading ultimately to death of target invertebrates. Like virtually all insecticides, they can also have lethal and sublethal impacts on non-target organisms, including insect predators and vertebrates. Furthermore, a range of synergistic effects with other stressors have been documented. Here, we review extensively their metabolic pathways, showing how they form both compound-specific and common metabolites which can themselves be toxic. These may result in prolonged toxicity. Considering their wide commercial expansion, mode of action, the systemic properties in plants, persistence and environmental fate, coupled with limited information about the toxicity profiles of these compounds and their metabolites, neonicotinoids and fipronil may entail significant risks to the environment. A global evaluation of the potential collateral effects of their use is therefore timely. The present paper and subsequent chapters in this review of the global literature explore these risks and show a growing body of evidence that persistent, low concentrations of these insecticides pose serious risks of undesirable environmental impacts.

1,131 citations

Journal ArticleDOI
Eric Schuettpelz1, Harald Schneider2, Alan R. Smith3, Peter Hovenkamp4, Jefferson Prado, Germinal Rouhan5, Alexandre Salino6, Michael A. Sundue7, Thaís Elias Almeida8, Barbara S. Parris, Emily B. Sessa9, Ashley R. Field10, André Luís de Gasper, Carl J. Rothfels3, Michael D. Windham11, Marcus Lehnert12, Benjamin Dauphin13, Atsushi Ebihara, Samuli Lehtonen14, Pedro Bond Schwartsburd, Jordan S. Metzgar15, Li-Bing Zhang16, Li-Yaung Kuo17, Patrick J. Brownsey18, Masahiro Kato, Marcelo D. Arana19, Francine Costa Assis6, Michael S. Barker20, David S. Barrington7, Ho-Ming Chang21, Yi-Han Chang, Yi-Shan Chao22, Cheng-Wei Chen, De-Kui Chen23, Wen-Liang Chiou, Vinícius Antonio de Oliveira Dittrich24, Yi-Fan Duan25, Jean-Yves Dubuisson5, Donald R. Farrar26, Susan Fawcett7, Jose María Gabriel y Galán27, Luiz Armando de Araújo Góes-Neto6, Jason R. Grant13, Amanda L. Grusz, Christopher H. Haufler28, Warren D. Hauk29, Hai He23, Sabine Hennequin5, Regina Y. Hirai, Layne Huiet11, Michael Kessler30, Petra Korall, Paulo H. Labiak, Anders Larsson, Blanca León, Chun-Xiang Li, Fay-Wei Li, Melanie A. Link-Pérez, Hong-Mei Liu, Ngan Thi Lu, Esteban I. Meza-Torres, Xin-Yuan Miao, Robbin C. Moran, Claudine M. Mynssen, Nathalie S. Nagalingum, Benjamin Øllgaard, Alison M. Paul, Jovani B. S. Pereira, Leon R. Perrie, M. Mónica Ponce, Tom A. Ranker, Christian Schulz, Wataru Shinohara, Alexander Shmakov, Erin M. Sigel, Filipe Soares de Souza, Lana da Silva Sylvestre, Weston Testo, Luz Amparo Triana-Moreno, Chie Tsutsumi, Hanna Tuomisto, Ivan A. Valdespino, Alejandra Vasco, Raquel Stauffer Viveros, Alan S. Weakley, Ran Wei, Stina Weststrand, Paul G. Wolf, George Yatskievych, Xiao-Gang Xu, Yue-Hong Yan, Liang Zhang16, Xian-Chun Zhang, Xin-Mao Zhou 
TL;DR: A modern, comprehensive classification for lycophytes and ferns, down to the genus level, utilizing a community‐based approach, that uses monophyly as the primary criterion for the recognition of taxa, but also aims to preserve existing taxa and circumscriptions that are both widely accepted and consistent with the understanding of pteridophyte phylogeny.
Abstract: Phylogeny has long informed pteridophyte classification. As our ability to infer evolutionary trees has improved, classifications aimed at recognizing natural groups have become increasingly predic ...

971 citations


Authors

Showing all 2232 results

NameH-indexPapersCitations
Didier Raoult1733267153016
Paul J. Dyson10381042095
Philippe Dubois101109848086
Andreas Engel9944833494
Enrico Martinoia9626026702
Jérôme Faist9197037221
Antoine Guisan8533255475
David A. Ritchie84155541123
Fernando Quevedo8228722879
Christophe Ballif8269626162
Ted C. J. Turlings7522820808
Bernard Testa7143718216
Gerta Keller7129414012
N. F. de Rooij6754415726
Leone Spiccia6639518915
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

85% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

84% related

École Normale Supérieure
99.4K papers, 3M citations

84% related

University of California, Santa Barbara
80.8K papers, 4.6M citations

83% related

Arizona State University
109.6K papers, 4.4M citations

83% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202337
2022121
2021137
2020123
2019138
2018128