scispace - formally typeset
Search or ask a question
Institution

University of Nevada, Reno

EducationReno, Nevada, United States
About: University of Nevada, Reno is a education organization based out in Reno, Nevada, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 13561 authors who have published 28217 publications receiving 882002 citations. The organization is also known as: University of Nevada & Nevada State University.


Papers
More filters
Journal ArticleDOI
TL;DR: This is the most accurate to-date test of the low-energy electroweak sector of the SM and increases the lower limit on the masses of extra Z bosons predicted by models of grand unification and string theories.
Abstract: We carry out high-precision calculation of parity violation in a cesium atom, reducing theoretical uncertainty by a factor of 2 compared to previous evaluations. We combine previous measurements with calculations and extract the weak charge of the 133Cs nucleus, QW=-73.16(29)expt(20)theor. The result is in agreement with the standard model (SM) of elementary particles. This is the most accurate to-date test of the low-energy electroweak sector of the SM. In combination with the results of high-energy collider experiments, we confirm the energy dependence (or "running") of the electroweak force over an energy range spanning 4 orders of magnitude (from approximately 10 MeV to approximately 100 GeV). Additionally, our result places constraints on a variety of new physics scenarios beyond the SM. In particular, we increase the lower limit on the masses of extra Z bosons predicted by models of grand unification and string theories.

208 citations

Journal ArticleDOI
TL;DR: The 27 February 2010 Chile earthquake caused widespread nonstructural damage in practically all types of buildings as mentioned in this paper, while few commercial, residential, office, and industrial buildings suffered structural damage.
Abstract: The 27 February 2010 Chile earthquake caused widespread nonstructural damage in practically all types of buildings. While few commercial, residential, office, and industrial buildings suffered stru...

208 citations

Journal ArticleDOI
TL;DR: Comparison of the two species in the fully hydrated state revealed intrinsic differences between the two metabolomes, suggesting that S. stapfianus had higher concentrations of osmolytes, lower concentrations of metabolites associated with energy metabolism, andHigher concentrations of nitrogen metabolites, suggesting it is primed metabolically for dehydration stress.
Abstract: Understanding how plants tolerate dehydration is a prerequisite for developing novel strategies for improving drought tolerance. The desiccation-tolerant (DT) Sporobolus stapfianus and the desiccation-sensitive (DS) Sporobolus pyramidalis formed a sister group contrast to reveal adaptive metabolic responses to dehydration using untargeted global metabolomic analysis. Young leaves from both grasses at full hydration or at 60% relative water content (RWC) and from S. stapfianus at lower RWCs were analyzed using liquid and gas chromatography linked to mass spectrometry or tandem mass spectrometry. Comparison of the two species in the fully hydrated state revealed intrinsic differences between the two metabolomes. S. stapfianus had higher concentrations of osmolytes, lower concentrations of metabolites associated with energy metabolism, and higher concentrations of nitrogen metabolites, suggesting that it is primed metabolically for dehydration stress. Further reduction of the leaf RWC to 60% instigated a metabolic shift in S. stapfianus toward the production of protective compounds, whereas S. pyramidalis responded differently. The metabolomes of S. stapfianus leaves below 40% RWC were strongly directed toward antioxidant production, nitrogen remobilization, ammonia detoxification, and soluble sugar production. Collectively, the metabolic profiles obtained uncovered a cascade of biochemical regulation strategies critical to the survival of S. stapfianus under desiccation.

208 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe the demand management process in detail to show how it can be implemented within a company and managed across firms in the supply chain, examine the activities of each sub-process; evaluate the interfaces with corporate functions, processes and firms; and provide examples of successful implementation.
Abstract: Demand management is the supply chain management process that balances the customers' requirements with the capabilities of the supply chain. With the right process in place, management can match supply with demand proactively and execute the plan with minimal disruptions. The process is not limited to forecasting. It includes synchronizing supply and demand, increasing flexibility, and reducing variability. In this paper, we describe the demand management process in detail to show how it can be implemented within a company and managed across firms in the supply chain. We examine the activities of each sub‐process; evaluate the interfaces with corporate functions, processes and firms; and provide examples of successful implementation.

208 citations


Authors

Showing all 13726 results

NameH-indexPapersCitations
Robert Langer2812324326306
Thomas C. Südhof191653118007
David W. Johnson1602714140778
Menachem Elimelech15754795285
Jeffrey L. Cummings148833116067
Bing Zhang121119456980
Arturo Casadevall12098055001
Mark H. Ellisman11763755289
Thomas G. Ksiazek11339846108
Anthony G. Fane11256540904
Leonardo M. Fabbri10956660838
Gary H. Lyman10869452469
Steven C. Hayes10645051556
Stephen P. Long10338446119
Gary Cutter10373740507
Network Information
Related Institutions (5)
Pennsylvania State University
196.8K papers, 8.3M citations

95% related

University of Minnesota
257.9K papers, 11.9M citations

94% related

University of Florida
200K papers, 7.1M citations

94% related

Rutgers University
159.4K papers, 6.7M citations

94% related

Texas A&M University
164.3K papers, 5.7M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202368
2022222
20211,756
20201,743
20191,514
20181,397