scispace - formally typeset
Search or ask a question
Institution

University of Nevada, Reno

EducationReno, Nevada, United States
About: University of Nevada, Reno is a education organization based out in Reno, Nevada, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 13561 authors who have published 28217 publications receiving 882002 citations. The organization is also known as: University of Nevada & Nevada State University.


Papers
More filters
Journal ArticleDOI
TL;DR: Approaches such as metabolic profiling and metabolic fingerprinting as well as combination of different 'omics' platforms to achieve a holistic view of the plant response stress are described and detailed pathway analysis is conducted.
Abstract: Stress in plants could be defined as any change in growth condition(s) that disrupts metabolic homeostasis and requires an adjustment of metabolic pathways in a process that is usually referred to as acclimation. Metabolomics could contribute significantly to the study of stress biology in plants and other organisms by identifying different compounds, such as by-products of stress metabolism, stress signal transduction molecules or molecules that are part of the acclimation response of plants. These could be further tested by direct measurements, correlated with changes in transcriptome and proteome expression and confirmed by mutant analysis. In this review, we will discuss recent application of metabolomics and system biology to the area of plant stress response. We will describe approaches such as metabolic profiling and metabolic fingerprinting as well as combination of different 'omics' platforms to achieve a holistic view of the plant response stress and conduct detailed pathway analysis.

577 citations

Journal ArticleDOI
TL;DR: Slow wave frequency is regulated by a variety of physiological agonists and conditions, and shifts in pacemaker dominance can occur in response to both neural and nonneural inputs.
Abstract: ▪ Abstract In the gastrointestinal tract, phasic contractions are caused by electrical activity termed slow waves. Slow waves are generated and actively propagated by interstitial cells of Cajal (ICC). The initiation of pacemaker activity in the ICC is caused by release of Ca2+ from inositol 1,4,5-trisphosphate (IP3) receptor–operated stores, uptake of Ca2+ into mitochondria, and the development of unitary currents. Summation of unitary currents causes depolarization and activation of a dihydropyridine-resistant Ca2+ conductance that entrains pacemaker activity in a network of ICC, resulting in the active propagation of slow waves. Slow wave frequency is regulated by a variety of physiological agonists and conditions, and shifts in pacemaker dominance can occur in response to both neural and nonneural inputs. Loss of ICC in many human motility disorders suggests exciting new hypotheses for the etiology of these disorders.

572 citations

Journal ArticleDOI
01 Apr 2004-Nature
TL;DR: It is shown that adaptation effects are pronounced for natural variations in faces and for natural categorical judgements about faces, suggesting that adaptation may routinely influence face perception in normal viewing and could have an important role in calibrating properties of face perception according to the subset of faces populating an individual's environment.
Abstract: Face perception is fundamentally important for judging the characteristics of individuals, such as identification of their gender, age, ethnicity or expression. We asked how the perception of these characteristics is influenced by the set of faces that observers are exposed to. Previous studies have shown that the appearance of a face can be biased strongly after viewing an altered image of the face, and have suggested that these after-effects reflect response changes in the neural mechanisms underlying object or face perception. Here we show that these adaptation effects are pronounced for natural variations in faces and for natural categorical judgements about faces. This suggests that adaptation may routinely influence face perception in normal viewing, and could have an important role in calibrating properties of face perception according to the subset of faces populating an individual's environment.

569 citations

Journal ArticleDOI
04 Feb 1993-Nature
TL;DR: In this paper, electrical conductivity measurements from a new Greenland ice core, which confirm these previous observations, and reveal a hitherto unrecognized mode of rapid climate variation, are reported.
Abstract: POLAR ice contains a unique record of past climate variations; previous Greenland ice cores have documented relatively warm ‘interstadial’ periods during the last glaciation and short (centuryscale) returns to colder conditions during the glacial to interglacial warming (see, for example, ref. 1). These climate features have also been observed to varying degrees in ocean sediment cores2–4 and terrestrial pollen and insect records5–7. Here we report electrical conductivity measurements from a new Greenland ice core, which confirm these previous observations, and also reveal a hitherto unrecognized mode of rapid climate variation. Fluctuations in ice conductivity on the scales of <5–20 years reflect rapid oscillations in the dust content of the atmosphere. This ‘flickering’ between two preferred states would seem to require extremely rapid reorganizations in atmospheric circulation.

567 citations

Journal ArticleDOI
TL;DR: It is shown that despite the weakness of gravity, the phase evolution induced by the gravitational interaction of two micron size test masses in adjacent matter-wave interferometers can detectably entangle them even when they are placed far apart enough to keep Casimir-Polder forces at bay.
Abstract: Understanding gravity in the framework of quantum mechanics is one of the great challenges in modern physics. However, the lack of empirical evidence has lead to a debate on whether gravity is a quantum entity. Despite varied proposed probes for quantum gravity, it is fair to say that there are no feasible ideas yet to test its quantum coherent behavior directly in a laboratory experiment. Here, we introduce an idea for such a test based on the principle that two objects cannot be entangled without a quantum mediator. We show that despite the weakness of gravity, the phase evolution induced by the gravitational interaction of two micron size test masses in adjacent matter-wave interferometers can detectably entangle them even when they are placed far apart enough to keep Casimir-Polder forces at bay. We provide a prescription for witnessing this entanglement, which certifies gravity as a quantum coherent mediator, through simple spin correlation measurements.

567 citations


Authors

Showing all 13726 results

NameH-indexPapersCitations
Robert Langer2812324326306
Thomas C. Südhof191653118007
David W. Johnson1602714140778
Menachem Elimelech15754795285
Jeffrey L. Cummings148833116067
Bing Zhang121119456980
Arturo Casadevall12098055001
Mark H. Ellisman11763755289
Thomas G. Ksiazek11339846108
Anthony G. Fane11256540904
Leonardo M. Fabbri10956660838
Gary H. Lyman10869452469
Steven C. Hayes10645051556
Stephen P. Long10338446119
Gary Cutter10373740507
Network Information
Related Institutions (5)
Pennsylvania State University
196.8K papers, 8.3M citations

95% related

University of Minnesota
257.9K papers, 11.9M citations

94% related

University of Florida
200K papers, 7.1M citations

94% related

Rutgers University
159.4K papers, 6.7M citations

94% related

Texas A&M University
164.3K papers, 5.7M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202368
2022222
20211,756
20201,743
20191,514
20181,397