scispace - formally typeset
Search or ask a question

Showing papers by "University of New Hampshire published in 2018"


Journal ArticleDOI
TL;DR: The recovery of viral populations from peatland soils across a permafrost thaw gradient provides insights into soil viral diversity, their hosts and the potential impacts on carbon cycling in this environment, and suggests that viruses may impact ecosystem function in climate-critical, terrestrial habitats.
Abstract: Climate change threatens to release abundant carbon that is sequestered at high latitudes, but the constraints on microbial metabolisms that mediate the release of methane and carbon dioxide are poorly understood1,2,3,4,5,6,7. The role of viruses, which are known to affect microbial dynamics, metabolism and biogeochemistry in the oceans8,9,10, remains largely unexplored in soil. Here, we aimed to investigate how viruses influence microbial ecology and carbon metabolism in peatland soils along a permafrost thaw gradient in Sweden. We recovered 1,907 viral populations (genomes and large genome fragments) from 197 bulk soil and size-fractionated metagenomes, 58% of which were detected in metatranscriptomes and presumed to be active. In silico predictions linked 35% of the viruses to microbial host populations, highlighting likely viral predators of key carbon-cycling microorganisms, including methanogens and methanotrophs. Lineage-specific virus/host ratios varied, suggesting that viral infection dynamics may differentially impact microbial responses to a changing climate. Virus-encoded glycoside hydrolases, including an endomannanase with confirmed functional activity, indicated that viruses influence complex carbon degradation and that viral abundances were significant predictors of methane dynamics. These findings suggest that viruses may impact ecosystem function in climate-critical, terrestrial habitats and identify multiple potential viral contributions to soil carbon cycling.

311 citations


Journal ArticleDOI
TL;DR: A series of datasets, together consisting of almost 750 years of observations, characterizing vegetation phenology in diverse ecosystems across North America can be used for phenological model validation and development, evaluation of satellite remote sensing data products, benchmarking earth system models, and studies of climate change impacts on terrestrial ecosystems.
Abstract: Vegetation phenology controls the seasonality of many ecosystem processes, as well as numerous biosphere-atmosphere feedbacks. Phenology is also highly sensitive to climate change and variability. Here we present a series of datasets, together consisting of almost 750 years of observations, characterizing vegetation phenology in diverse ecosystems across North America. Our data are derived from conventional, visible-wavelength, automated digital camera imagery collected through the PhenoCam network. For each archived image, we extracted RGB (red, green, blue) colour channel information, with means and other statistics calculated across a region-of-interest (ROI) delineating a specific vegetation type. From the high-frequency (typically, 30 min) imagery, we derived time series characterizing vegetation colour, including "canopy greenness", processed to 1- and 3-day intervals. For ecosystems with one or more annual cycles of vegetation activity, we provide estimates, with uncertainties, for the start of the "greenness rising" and end of the "greenness falling" stages. The database can be used for phenological model validation and development, evaluation of satellite remote sensing data products, benchmarking earth system models, and studies of climate change impacts on terrestrial ecosystems.

292 citations


Journal ArticleDOI
TL;DR: In this paper, a pixel-based supervised random forest (RF) machine learning algorithm (MLA) was used on the Google Earth Engine (GEE) cloud computing platform.
Abstract: Mapping high resolution (30-m or better) cropland extent over very large areas such as continents or large countries or regions accurately, precisely, repeatedly, and rapidly is of great importance for addressing the global food and water security challenges. Such cropland extent products capture individual farm fields, small or large, and are crucial for developing accurate higher-level cropland products such as cropping intensities, crop types, crop watering methods (irrigated or rainfed), crop productivity, and crop water productivity. It also brings many challenges that include handling massively large data volumes, computing power, and collecting resource intensive reference training and validation data over complex geographic and political boundaries. Thereby, this study developed a precise and accurate Landsat 30-m derived cropland extent product for two very important, distinct, diverse, and large countries: Australia and China. The study used of eight bands (blue, green, red, NIR, SWIR1, SWIR2, TIR1, and NDVI) of Landsat-8 every 16-day Operational Land Imager (OLI) data for the years 2013–2015. The classification was performed by using a pixel-based supervised random forest (RF) machine learning algorithm (MLA) executed on the Google Earth Engine (GEE) cloud computing platform. Each band was time-composited over 4–6 time-periods over a year using median value for various agro-ecological zones (AEZs) of Australia and China. This resulted in a 32–48-layer mega-file data-cube (MFDC) for each of the AEZs. Reference training and validation data were gathered from: (a) field visits, (b) sub-meter to 5-m very high spatial resolution imagery (VHRI) data, and (c) ancillary sources such as from the National agriculture bureaus. Croplands versus non-croplands knowledge base for training the RF algorithm were derived from MFDC using 958 reference-training samples for Australia and 2130 reference-training samples for China. The resulting 30-m cropland extent product was assessed for accuracies using independent validation samples: 900 for Australia and 1972 for China. The 30-m cropland extent product of Australia showed an overall accuracy of 97.6% with a producer’s accuracy of 98.8% (errors of omissions = 1.2%), and user’s accuracy of 79% (errors of commissions = 21%) for the cropland class. For China, overall accuracies were 94% with a producer’s accuracy of 80% (errors of omissions = 20%), and user’s accuracy of 84.2% (errors of commissions = 15.8%) for cropland class. Total cropland areas of Australia were estimated as 35.1 million hectares and 165.2 million hectares for China. These estimates were higher by 8.6% for Australia and 3.9% for China when compared with the traditionally derived national statistics. The cropland extent product further demonstrated the ability to estimate sub-national cropland areas accurately by providing an R2 value of 0.85 when compared with province-wise cropland areas of China. The study provides a paradigm-shift on how cropland maps are produced using multi-date remote sensing. These products can be browsed at www.croplands.org and made available for download at NASA’s Land Processes Distributed Active Archive Center (LP DAAC) https://www.lpdaac.usgs.gov/node/1282.

289 citations


Journal ArticleDOI
09 May 2018-Nature
TL;DR: Observations of electron-scale current sheets in Earth’s turbulent magnetosheath reveal electron reconnection without ion coupling, contrary to expectations from the standard model of magnetic reconnection.
Abstract: Magnetic reconnection in current sheets is a magnetic-to-particle energy conversion process that is fundamental to many space and laboratory plasma systems. In the standard model of reconnection, this process occurs in a minuscule electron-scale diffusion region1,2. On larger scales, ions couple to the newly reconnected magnetic-field lines and are ejected away from the diffusion region in the form of bi-directional ion jets at the ion Alfven speed3-5. Much of the energy conversion occurs in spatially extended ion exhausts downstream of the diffusion region 6 . In turbulent plasmas, which contain a large number of small-scale current sheets, reconnection has long been suggested to have a major role in the dissipation of turbulent energy at kinetic scales7-11. However, evidence for reconnection plasma jetting in small-scale turbulent plasmas has so far been lacking. Here we report observations made in Earth's turbulent magnetosheath region (downstream of the bow shock) of an electron-scale current sheet in which diverging bi-directional super-ion-Alfvenic electron jets, parallel electric fields and enhanced magnetic-to-particle energy conversion were detected. Contrary to the standard model of reconnection, the thin reconnecting current sheet was not embedded in a wider ion-scale current layer and no ion jets were detected. Observations of this and other similar, but unidirectional, electron jet events without signatures of ion reconnection reveal a form of reconnection that can drive turbulent energy transfer and dissipation in electron-scale current sheets without ion coupling.

281 citations


Journal ArticleDOI
16 Jul 2018-Nature
TL;DR: Analysis of more than 1,500 microbial genomes sheds light on the processing of carbon released as permafrost thaws, and links changing biogeochemistry to specific microbial lineages involved in carbon processing, and provides key information for predicting the effects of climate change onpermafrost systems.
Abstract: As global temperatures rise, large amounts of carbon sequestered in permafrost are becoming available for microbial degradation. Accurate prediction of carbon gas emissions from thawing permafrost is limited by our understanding of these microbial communities. Here we use metagenomic sequencing of 214 samples from a permafrost thaw gradient to recover 1,529 metagenome-assembled genomes, including many from phyla with poor genomic representation. These genomes reflect the diversity of this complex ecosystem, with genus-level representatives for more than sixty per cent of the community. Meta-omic analysis revealed key populations involved in the degradation of organic matter, including bacteria whose genomes encode a previously undescribed fungal pathway for xylose degradation. Microbial and geochemical data highlight lineages that correlate with the production of greenhouse gases and indicate novel syntrophic relationships. Our findings link changing biogeochemistry to specific microbial lineages involved in carbon processing, and provide key information for predicting the effects of climate change on permafrost systems.

262 citations


Journal ArticleDOI
TL;DR: Photocatalysts containing single Co2+ sites on C3N4 were prepared by a simple deposition method and demonstrated excellent activity and product selectivity toward CO formation and their important role in achieving selective CO2 reduction.
Abstract: Framework nitrogen atoms of carbon nitride (C3N4) can coordinate with and activate metal sites for catalysis. In this study, C3N4 was employed to harvest visible light and activate Co2+ sites, without the use of additional ligands, in photochemical CO2 reduction. Photocatalysts containing single Co2+ sites on C3N4 were prepared by a simple deposition method and demonstrated excellent activity and product selectivity toward CO formation. A turnover number of more than 200 was obtained for CO production using the synthesized photocatalyst under visible-light irradiation. Inactive cobalt oxides formed at relatively high cobalt loadings but did not alter product selectivity. Further studies with X-ray absorption spectroscopy confirmed the presence of single Co2+ sites on C3N4 and their important role in achieving selective CO2 reduction.

257 citations


Journal ArticleDOI
TL;DR: The findings show that there have been shifts in the timing of interacting species in recent decades; the next challenges are to improve the ability to predict the direction of change and understand the full consequences for communities and ecosystems.
Abstract: Phenological responses to climate change (e.g., earlier leaf-out or egg hatch date) are now well documented and clearly linked to rising temperatures in recent decades. Such shifts in the phenologies of interacting species may lead to shifts in their synchrony, with cascading community and ecosystem consequences. To date, single-system studies have provided no clear picture, either finding synchrony shifts may be extremely prevalent [Mayor SJ, et al. (2017) Sci Rep 7:1902] or relatively uncommon [Iler AM, et al. (2013) Glob Chang Biol 19:2348–2359], suggesting that shifts toward asynchrony may be infrequent. A meta-analytic approach would provide insights into global trends and how they are linked to climate change. We compared phenological shifts among pairwise species interactions (e.g., predator–prey) using published long-term time-series data of phenological events from aquatic and terrestrial ecosystems across four continents since 1951 to determine whether recent climate change has led to overall shifts in synchrony. We show that the relative timing of key life cycle events of interacting species has changed significantly over the past 35 years. Further, by comparing the period before major climate change (pre-1980s) and after, we show that estimated changes in phenology and synchrony are greater in recent decades. However, there has been no consistent trend in the direction of these changes. Our findings show that there have been shifts in the timing of interacting species in recent decades; the next challenges are to improve our ability to predict the direction of change and understand the full consequences for communities and ecosystems.

253 citations


Journal ArticleDOI
01 Aug 2018-Nature
TL;DR: Experimental whole-ecosystem warming treatments of a Picea–Sphagnum peat bog reveal the likely phenological consequences of future temperature increases that exceed those of historical climate regimes.
Abstract: Shifts in vegetation phenology are a key example of the biological effects of climate change1–3. However, there is substantial uncertainty about whether these temperature-driven trends will continue, or whether other factors—for example, photoperiod—will become more important as warming exceeds the bounds of historical variability4,5. Here we use phenological transition dates derived from digital repeat photography6 to show that experimental whole-ecosystem warming treatments7 of up to +9 °C linearly correlate with a delayed autumn green-down and advanced spring green-up of the dominant woody species in a boreal Picea–Sphagnum bog. Results were confirmed by direct observation of both vegetative and reproductive phenology of these and other bog plant species, and by multiple years of observations. There was little evidence that the observed responses were constrained by photoperiod. Our results indicate a likely extension of the period of vegetation activity by 1–2 weeks under a ‘CO2 stabilization’ climate scenario (+2.6 ± 0.7 °C), and 3–6 weeks under a ‘high-CO2 emission’ scenario (+5.9 ± 1.1 °C), by the end of the twenty-first century. We also observed severe tissue mortality in the warmest enclosures after a severe spring frost event. Failure to cue to photoperiod resulted in precocious green-up and a premature loss of frost hardiness8, which suggests that vulnerability to spring frost damage will increase in a warmer world9,10. Vegetation strategies that have evolved to balance tradeoffs associated with phenological temperature tracking may be optimal under historical climates, but these strategies may not be optimized for future climate regimes. These in situ experimental results are of particular importance because boreal forests have both a circumpolar distribution and a key role in the global carbon cycle11. Experimental whole-ecosystem warming treatments of a Picea–Sphagnum peat bog reveal the likely phenological consequences of future temperature increases that exceed those of historical climate regimes.

237 citations


Journal ArticleDOI
TL;DR: OCO-2 SIF generally had a better performance for predicting GPP than satellite-derived vegetation indices and a light use efficiency model, and the generally consistent slope of the relationship among biomes suggests a nearly universal rather than biome-specific SIF-GPP relationship.
Abstract: Solar-induced chlorophyll fluorescence (SIF) has been increasingly used as a proxy for terrestrial gross primary productivity (GPP). Previous work mainly evaluated the relationship between satellite-observed SIF and gridded GPP products both based on coarse spatial resolutions. Finer resolution SIF (1.3 km × 2.25 km) measured from the Orbiting Carbon Observatory-2 (OCO-2) provides the first opportunity to examine the SIF-GPP relationship at the ecosystem scale using flux tower GPP data. However, it remains unclear how strong the relationship is for each biome and whether a robust, universal relationship exists across a variety of biomes. Here we conducted the first global analysis of the relationship between OCO-2 SIF and tower GPP for a total of 64 flux sites across the globe encompassing eight major biomes. OCO-2 SIF showed strong correlations with tower GPP at both midday and daily timescales, with the strongest relationship observed for daily SIF at the 757 nm (R2 = 0.72, p < 0.0001). Strong linear relationships between SIF and GPP were consistently found for all biomes (R2 = 0.57-0.79, p < 0.0001) except evergreen broadleaf forests (R2 = 0.16, p < 0.05) at the daily timescale. A higher slope was found for C4 grasslands and croplands than for C3 ecosystems. The generally consistent slope of the relationship among biomes suggests a nearly universal rather than biome-specific SIF-GPP relationship, and this finding is an important distinction and simplification compared to previous results. SIF was mainly driven by absorbed photosynthetically active radiation and was also influenced by environmental stresses (temperature and water stresses) that determine photosynthetic light use efficiency. OCO-2 SIF generally had a better performance for predicting GPP than satellite-derived vegetation indices and a light use efficiency model. The universal SIF-GPP relationship can potentially lead to more accurate GPP estimates regionally or globally. Our findings revealed the remarkable ability of finer resolution SIF observations from OCO-2 and other new or future missions (e.g., TROPOMI, FLEX) for estimating terrestrial photosynthesis across a wide variety of biomes and identified their potential and limitations for ecosystem functioning and carbon cycle studies.

233 citations


Journal ArticleDOI
TL;DR: A review of the typical characteristics and binding mechanisms of various biorecognition elements, and how they relate to biosensor performance characteristics, specifically sensitivity, selectivity, reproducibility, and reusability are reviewed.

216 citations


Journal ArticleDOI
21 Dec 2018-Science
TL;DR: In this paper, the electron-scale plasma measurements revealed super-Alfvenic electron jets reaching 15,000 kilometers per second, electron meandering motion and acceleration by the electric field, producing multiple crescent-shaped structures in the velocity distributions, consistent with fast reconnection.
Abstract: Magnetic reconnection is an energy conversion process that occurs in many astrophysical contexts including Earth’s magnetosphere, where the process can be investigated in situ by spacecraft. On 11 July 2017, the four Magnetospheric Multiscale spacecraft encountered a reconnection site in Earth’s magnetotail, where reconnection involves symmetric inflow conditions. The electron-scale plasma measurements revealed (i) super-Alfvenic electron jets reaching 15,000 kilometers per second; (ii) electron meandering motion and acceleration by the electric field, producing multiple crescent-shaped structures in the velocity distributions; and (iii) the spatial dimensions of the electron diffusion region with an aspect ratio of 0.1 to 0.2, consistent with fast reconnection. The well-structured multiple layers of electron populations indicate that the dominant electron dynamics are mostly laminar, despite the presence of turbulence near the reconnection site.

Journal ArticleDOI
TL;DR: Deeper, abrupt thaw beneath lakes will more than double radiative forcing from permafrost-soil carbon fluxes this century, demonstrating the need to incorporate abrupt thaw processes in earth system models for more comprehensive projection of the PCF this century.
Abstract: Permafrost carbon feedback (PCF) modeling has focused on gradual thaw of near-surface permafrost leading to enhanced carbon dioxide and methane emissions that accelerate global climate warming. These state-of-the-art land models have yet to incorporate deeper, abrupt thaw in the PCF. Here we use model data, supported by field observations, radiocarbon dating, and remote sensing, to show that methane and carbon dioxide emissions from abrupt thaw beneath thermokarst lakes will more than double radiative forcing from circumpolar permafrost-soil carbon fluxes this century. Abrupt thaw lake emissions are similar under moderate and high representative concentration pathways (RCP4.5 and RCP8.5), but their relative contribution to the PCF is much larger under the moderate warming scenario. Abrupt thaw accelerates mobilization of deeply frozen, ancient carbon, increasing 14C-depleted permafrost soil carbon emissions by ~125–190% compared to gradual thaw alone. These findings demonstrate the need to incorporate abrupt thaw processes in earth system models for more comprehensive projection of the PCF this century.


Journal ArticleDOI
TL;DR: A two-step algorithm is developed to efficiently approximate the maximum likelihood estimate in logistic regression and derive optimal subsampling probabilities that minimize the asymptotic mean squared error of the resultant estimator.
Abstract: For massive data, the family of subsampling algorithms is popular to downsize the data volume and reduce computational burden. Existing studies focus on approximating the ordinary least-square esti...

Journal ArticleDOI
TL;DR: In particular, root-deposited low-molecular-weight exudates may enhance the mobilization and solubilization of MAOM, increasing its bioavailability as mentioned in this paper.
Abstract: Despite decades of research progress, ecologists are still debating which pools and fluxes provide nitrogen (N) to plants and soil microbes across different ecosystems. Depolymerization of soil organic N is recognized as the rate-limiting step in the production of bioavailable N, and it is generally assumed that detrital N is the main source. However, in many mineral soils, detrital polymers constitute a minor fraction of total soil organic N. The majority of organic N is associated with clay-sized particles where physicochemical interactions may limit the accessibility of N-containing compounds. Although mineral-associated organic matter (MAOM) has historically been considered a critical, but relatively passive, reservoir of soil N, a growing body of research now points to the dynamic nature of mineral-organic associations and their potential for destabilization. Here we synthesize evidence from biogeoscience and soil ecology to demonstrate how MAOM is an important, yet overlooked, mediator of bioavailable N, especially in the rhizosphere. We highlight several biochemical strategies that enable plants and microbes to disrupt mineral-organic interactions and access MAOM. In particular, root-deposited low-molecular-weight exudates may enhance the mobilization and solubilization of MAOM, increasing its bioavailability. However, the competitive balance between the possible fates of N monomers—bound to mineral surfaces versus dissolved and available for assimilation—will depend on the specific interaction between mineral properties, soil solution, mineral-bound organic matter, and microbes. Building off our emerging understanding of MAOM as a source of bioavailable N, we propose a revision of the Schimel and Bennett (Ecology 85:591–602, 2004) model (which emphasizes N depolymerization), by incorporating MAOM as a potential proximal mediator of bioavailable N.

Journal ArticleDOI
18 Apr 2018-PLOS ONE
TL;DR: This analysis finds that US consumers wasted 422g of food per person daily, with 30 million acres of cropland used to produce this food every year, and suggests that simultaneous efforts to improve diet quality and reduce food waste are necessary.
Abstract: Improving diet quality while simultaneously reducing environmental impact is a critical focus globally. Metrics linking diet quality and sustainability have typically focused on a limited suite of indicators, and have not included food waste. To address this important research gap, we examine the relationship between food waste, diet quality, nutrient waste, and multiple measures of sustainability: use of cropland, irrigation water, pesticides, and fertilizers. Data on food intake, food waste, and application rates of agricultural amendments were collected from diverse US government sources. Diet quality was assessed using the Healthy Eating Index-2015. A biophysical simulation model was used to estimate the amount of cropland associated with wasted food. This analysis finds that US consumers wasted 422g of food per person daily, with 30 million acres of cropland used to produce this food every year. This accounts for 30% of daily calories available for consumption, one-quarter of daily food (by weight) available for consumption, and 7% of annual cropland acreage. Higher quality diets were associated with greater amounts of food waste and greater amounts of wasted irrigation water and pesticides, but less cropland waste. This is largely due to fruits and vegetables, which are health-promoting and require small amounts of cropland, but require substantial amounts of agricultural inputs. These results suggest that simultaneous efforts to improve diet quality and reduce food waste are necessary. Increasing consumers’ knowledge about how to prepare and store fruits and vegetables will be one of the practical solutions to reducing food waste.

Journal ArticleDOI
TL;DR: In this article, a simple formula, validated with 75 simulations, was presented to distinguish between potential merger outcomes and predict the baryon mass left outside of the BH after merger.
Abstract: Gravitational-wave (GW) and electromagnetic (EM) signals from the merger of a neutron star (NS) and a black hole (BH) are a highly anticipated discovery. We present a simple formula, validated with 75 simulations, that distinguishes between potential merger outcomes and predicts the baryon mass left outside of the BH after merger. Our formula describes critical unexplored regimes: comparable masses with nonspinning BHs, and higher BH spins, and is essential in assessing whether events such as GW170817 could be NS-BH systems instead of NS-NS mergers.

Journal ArticleDOI
TL;DR: Ancestral state reconstruction analyses based on the phylogeny establish several notable organismal transitions in the evolutionary history of Cnidaria and depict the ancestral cnidarian as a solitary, non-symbiotic polyp that lacked a medusa stage.
Abstract: The phylogeny of Cnidaria has been a source of debate for decades, during which nearly all-possible relationships among the major lineages have been proposed. The ecological success of Cnidaria is predicated on several fascinating organismal innovations including stinging cells, symbiosis, colonial body plans and elaborate life histories. However, understanding the origins and subsequent diversification of these traits remains difficult due to persistent uncertainty surrounding the evolutionary relationships within Cnidaria. While recent phylogenomic studies have advanced our knowledge of the cnidarian tree of life, no analysis to date has included genome-scale data for each major cnidarian lineage. Here we describe a well-supported hypothesis for cnidarian phylogeny based on phylogenomic analyses of new and existing genome-scale data that includes representatives of all cnidarian classes. Our results are robust to alternative modes of phylogenetic estimation and phylogenomic dataset construction. We show that two popular phylogenomic matrix construction pipelines yield profoundly different datasets, both in the identities and in the functional classes of the loci they include, but resolve the same topology. We then leverage our phylogenetic resolution of Cnidaria to understand the character histories of several critical organismal traits. Ancestral state reconstruction analyses based on our phylogeny establish several notable organismal transitions in the evolutionary history of Cnidaria and depict the ancestral cnidarian as a solitary, non-symbiotic polyp that lacked a medusa stage. In addition, Bayes factor tests strongly suggest that symbiosis has evolved multiple times independently across the cnidarian radiation. Cnidaria have experienced more than 600 million years of independent evolution and in the process generated an array of organismal innovations. Our results add significant clarification on the cnidarian tree of life and the histories of some of these innovations. Further, we confirm the existence of Acraspeda (staurozoans plus scyphozoans and cubozoans), thus reviving an evolutionary hypothesis put forward more than a century ago.

Journal ArticleDOI
TL;DR: Information on DMI is required for good prediction, and other factors such as dietary neutral detergent fiber (NDF) concentration, improve the prediction for enteric CH 4 yield and intensity prediction.
Abstract: Enteric methane (CH4 ) production from cattle contributes to global greenhouse gas emissions. Measurement of enteric CH4 is complex, expensive, and impractical at large scales; therefore, models are commonly used to predict CH4 production. However, building robust prediction models requires extensive data from animals under different management systems worldwide. The objectives of this study were to (1) collate a global database of enteric CH4 production from individual lactating dairy cattle; (2) determine the availability of key variables for predicting enteric CH4 production (g/day per cow), yield [g/kg dry matter intake (DMI)], and intensity (g/kg energy corrected milk) and their respective relationships; (3) develop intercontinental and regional models and cross-validate their performance; and (4) assess the trade-off between availability of on-farm inputs and CH4 prediction accuracy. The intercontinental database covered Europe (EU), the United States (US), and Australia (AU). A sequential approach was taken by incrementally adding key variables to develop models with increasing complexity. Methane emissions were predicted by fitting linear mixed models. Within model categories, an intercontinental model with the most available independent variables performed best with root mean square prediction error (RMSPE) as a percentage of mean observed value of 16.6%, 14.7%, and 19.8% for intercontinental, EU, and United States regions, respectively. Less complex models requiring only DMI had predictive ability comparable to complex models. Enteric CH4 production, yield, and intensity prediction models developed on an intercontinental basis had similar performance across regions, however, intercepts and slopes were different with implications for prediction. Revised CH4 emission conversion factors for specific regions are required to improve CH4 production estimates in national inventories. In conclusion, information on DMI is required for good prediction, and other factors such as dietary neutral detergent fiber (NDF) concentration, improve the prediction. For enteric CH4 yield and intensity prediction, information on milk yield and composition is required for better estimation.

Journal ArticleDOI
TL;DR: In this article, a synthesis of 147 field manipulation experiments and five organic carbon (SOC) models with different representations of microbial and mineral processes was used to test process-based microbemineral SOC models.
Abstract: Soils contain more carbon than plants or the atmosphere, and sensitivities of soil organic carbon (SOC) stocks to changing climate and plant productivity are a major uncertainty in global carbon cycle projections. Despite a consensus that microbial degradation and mineral stabilization processes control SOC cycling, no systematic synthesis of long-term warming and litter addition experiments has been used to test process-based microbe-mineral SOC models. We explored SOC responses to warming and increased carbon inputs using a synthesis of 147 field manipulation experiments and five SOC models with different representations of microbial and mineral processes. Model projections diverged but encompassed a similar range of variability as the experimental results. Experimental measurements were insufficient to eliminate or validate individual model outcomes. While all models projected that CO2 efflux would increase and SOC stocks would decline under warming, nearly one-third of experiments observed decreases in CO2 flux and nearly half of experiments observed increases in SOC stocks under warming. Long-term measurements of C inputs to soil and their changes under warming are needed to reconcile modeled and observed patterns. Measurements separating the responses of mineral-protected and unprotected SOC fractions in manipulation experiments are needed to address key uncertainties in microbial degradation and mineral stabilization mechanisms. Integrating models with experimental design will allow targeting of these uncertainties and help to reconcile divergence among models to produce more confident projections of SOC responses to global changes.

Journal ArticleDOI
09 Nov 2018-Science
TL;DR: Imidacloprid’s effects on bumblebee worker behavior within the nest are investigated using an automated, robotic platform for continuous, multicolony monitoring of uniquely identified workers, showing that neonicotinoids induce widespread disruption of within-nest worker behavior that may contribute to impaired growth.
Abstract: Neonicotinoid pesticides can negatively affect bee colonies, but the behavioral mechanisms by which these compounds impair colony growth remain unclear. Here, we investigate imidacloprid's effects on bumblebee worker behavior within the nest, using an automated, robotic platform for continuous, multicolony monitoring of uniquely identified workers. We find that exposure to field-realistic levels of imidacloprid impairs nursing and alters social and spatial dynamics within nests, but that these effects vary substantially with time of day. In the field, imidacloprid impairs colony thermoregulation, including the construction of an insulating wax canopy. Our results show that neonicotinoids induce widespread disruption of within-nest worker behavior that may contribute to impaired growth, highlighting the potential of automated techniques for characterizing the multifaceted, dynamic impacts of stressors on behavior in bee colonies.

Journal ArticleDOI
01 Aug 2018
TL;DR: In this article, the authors proposed a set of multi-scale principles to guide research and policy for decreasing nitrogen losses in the future, and described the economic factors that could constrain or enable their implementation.
Abstract: Losses of nitrogen from agriculture are a major threat to environmental and human health at local, regional and global scales Emerging evidence shows that climate change and intensive agricultural management will interact to increase the harmful effects and undermine current mitigation efforts Identifying effective mitigation strategies and supporting policies requires an integrated understanding of the processes underlying potential agricultural nitrogen responses to climate change In this Review, we describe these processes, propose a set of multi-scale principles to guide research and policy for decreasing nitrogen losses in the future, and describe the economic factors that could constrain or enable their implementation Climate change and intensive agricultural management will interact to increase nitrogen (N) losses from agriculture This Review analyses the processes underlying potential agricultural N responses to climate change, proposes a set of principles to help decrease N losses in the future and describes the economic factors that could affect their implementation


Journal ArticleDOI
TL;DR: In this paper, the authors constructed a regional carbon budget for Eastern North America using historical data, empirical models, remote-sensing algorithms, and process-based models, showing that coastal carbon budgets should explicitly include tidal wetlands, estuaries, shelf waters and the linkages between them; ignoring any of them may produce a biased picture of coastal carbon cycling.
Abstract: Carbon cycling in the coastal zone affects global carbon budgets and is critical for understanding the urgent issues of hypoxia, acidification, and tidal wetland loss. However, there are no regional carbon budgets spanning the three main ecosystems in coastal waters: tidal wetlands, estuaries, and shelf waters. Here, we construct such a budget for Eastern North America using historical data, empirical models, remote-sensing algorithms, and process-based models. Considering the net fluxes of total carbon at the domain boundaries, 59 ± 12% (± 2 standard errors) of the carbon entering is from rivers and 41 ± 12% is from the atmosphere, while 80 ± 9% of the carbon leaving is exported to the open ocean and 20 ± 9% is buried. Net lateral carbon transfers between the three main ecosystem types are comparable to fluxes at the domain boundaries. Each ecosystem type contributes substantially to exchange with the atmosphere, with CO2 uptake split evenly between tidal wetlands and shelf waters, and estuarine CO2 outgassing offsetting half of the uptake. Similarly, burial is about equal in tidal wetlands and shelf waters, while estuaries play a smaller but still substantial role. The importance of tidal wetlands and estuaries in the overall budget is remarkable given that they respectively make up only 2.4 and 8.9% of the study domain area. This study shows that coastal carbon budgets should explicitly include tidal wetlands, estuaries, shelf waters and the linkages between them; ignoring any of them may produce a biased picture of coastal carbon cycling.

Journal ArticleDOI
TL;DR: Students who participated in a bystander program, compared to those who had not, had more pro-social attitudes/beliefs about sexual violence and intervening to prevent it, and engaged in more bystander behavior.
Abstract: Objectives: This systematic review and meta-analysis evaluates the effectiveness of bystander programs that address sexual violence on college campuses. Program effects on student attitudes/beliefs...

Journal ArticleDOI
TL;DR: Five machine learning algorithms are employed for ET upscaling including artificial neural network, Cubist, deep belief network, random forest, and support vector machine to upscale ET from eddy covariance flux tower sites to the regional scale with machinelearning algorithms.

Journal ArticleDOI
TL;DR: Foliar nitrogen (N) concentrations and isotope ratios obtained from >43,000 samples acquired over 37 years suggest global declines in N supply relative to plant demand, consistent with elevated atmospheric carbon dioxide.
Abstract: Human societies depend on an Earth system that operates within a constrained range of nutrient availability, yet the recent trajectory of terrestrial nitrogen (N) availability is uncertain. Examining patterns of foliar N concentrations and isotope ratios (delta N-15) from more than 43,000 samples acquired over 37 years, here we show that foliar N concentration declined by 9% and foliar delta N-15 declined by 0.6-1.6 parts per thousand. Examining patterns across different climate spaces, foliar delta N-15 declined across the entire range of mean annual temperature and mean annual precipitation tested. These results suggest declines in N supply relative to plant demand at the global scale. In all, there are now multiple lines of evidence of declining N availability in many unfertilized terrestrial ecosystems, including declines in delta N-15 of tree rings and leaves from herbarium samples over the past 75-150 years. These patterns are consistent with the proposed consequences of elevated atmospheric carbon dioxide and longer growing seasons. These declines will limit future terrestrial carbon uptake and increase nutritional stress for herbivores.

Journal ArticleDOI
TL;DR: Decision-making that preserves small floods while reducing the impacts of extreme floods can increase ecosystem service provision and minimize losses.
Abstract: Flooding is a major disturbance that impacts aquatic ecosystems and the ecosystem services that they provide. Predicted increases in global flood risk due to land use change and water cycle intensification will likely only increase the frequency and severity of these impacts. Extreme flooding events can cause loss of life and significant destruction to property and infrastructure, effects that are easily recognized and frequently reported in the media. However, flooding also has many other effects on people through freshwater aquatic ecosystem services, which often go unrecognized because they are less evident and can be difficult to evaluate. Here, we identify the effects that small magnitude frequently occurring floods ( 100-year recurrence interval) have on ten aquatic ecosystem services through a systematic literature review. We focused on ecosystem services considered by the Millennium Ecosystem Assessment including: (1) supporting services (primary production, soil formation), (2) regulating services (water regulation, water quality, disease regulation, climate regulation), (3) provisioning services (drinking water, food supply), and (4) cultural services (aesthetic value, recreation and tourism). The literature search resulted in 117 studies and each of the ten ecosystem services was represented by an average of 12 ± 4 studies. Extreme floods resulted in losses in almost every ecosystem service considered in this study. However, small floods had neutral or positive effects on half of the ecosystem services we considered. For example, small floods led to increases in primary production, water regulation, and recreation and tourism. Decision-making that preserves small floods while reducing the impacts of extreme floods can increase ecosystem service provision and minimize losses.

Journal ArticleDOI
TL;DR: In this paper, UMR ISPA, UMRISPA-UMR-ISPA, Villenave d’Ornon, France; 2 Department of Applied Ecology and Environmental Biology, Ghent University, Aquitaine, Belgium; 3 Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA; 4 Earth Systems Research Center, University of New Hampshire, Durham, NH, USA, 5 Department of Earth & Environment, Boston University, Boston, MA; 6 School of Informatics, Computing and Cyber Systems, Northern Arizona
Abstract: 1INRA, UMR ISPA, Villenave d’Ornon, France; 2Department of Applied Ecology and Environmental Biology, Ghent University, Aquitaine, Belgium; 3Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA; 4Earth Systems Research Center, University of New Hampshire, Durham, NH, USA; 5Department of Earth & Environment, Boston University, Boston, MA, USA; 6School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA and 7Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA

Journal ArticleDOI
TL;DR: Sextortion incidents were serious victimizations, and often co-occurred with teen dating violence, and are described so that practitioners can help victims find support and legal advice and remove posted images.