scispace - formally typeset
Search or ask a question
Institution

University of New Hampshire

EducationDurham, New Hampshire, United States
About: University of New Hampshire is a education organization based out in Durham, New Hampshire, United States. It is known for research contribution in the topics: Population & Solar wind. The organization has 9379 authors who have published 24025 publications receiving 1020112 citations. The organization is also known as: UNH.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors presented an analysis of the Arctic Ocean and its constituent seas for seafloor area distribution versus depth and ocean volume, using the bathymetry from the International Bathymetric Chart of Arctic Ocean (IBCAO).
Abstract: [1] This paper presents an analysis of the Arctic Ocean and its constituent seas for seafloor area distribution versus depth and ocean volume. The bathymetry from the International Bathymetric Chart of the Arctic Ocean (IBCAO) is used together with limits defining this ocean and its constituent seas from the International Hydrographic Organization (IHO) as well as redefined limits constructed to confine the seas to the shallow shelves. IBCAO is a bathymetric grid model with a resolution of 2.5 × 2.5 km, which significantly improved the portrayal of the Arctic Ocean seafloor through incorporation of newly released bathymetric data including echo soundings from U.S. and British navies, scientific nuclear submarine cruises, and icebreaker cruises. This analysis of seafloor area and ocean volume is the first for the Arctic Ocean based on this new and improved portrayal of the seafloor as represented by IBCAO. The seafloor area and volume are calculated for different depths starting from the present sea level and progressing in increments of 10 m to a depth of 500 m and in increments of 50 m from 550 m down to the deepest depth within each of the analyzed seas. Hypsometric curves expressed as simple histograms of the frequencies in different depth bins and depth plotted against cumulative area for each of the analyzed seas are presented. The area and volume calculations show that the entire IHO-defined Arctic Ocean makes up ∼4.3% of the total ocean area but only ∼1.4% of the volume. Furthermore, the IHO Arctic Ocean is the shallowest (mean depth 1201 m) of all the major oceans and their adjacent seas. The continental shelf area, from the coasts out to the shelf break, make up as much as ∼52.9% of the total area in the Arctic Ocean, defined in this work as consisting of the oceanic deep Arctic Ocean Basin; the broad continental shelves of the Barents, Kara, Laptev, East Siberian, Chukchi, and Beaufort Seas; the White Sea; and the narrow continental shelf off both the Canadian Arctic Archipelago and northern Greenland. This result indicates that the Arctic Ocean has significantly larger continental shelves compared with all the other oceans, where previous studies show that the proportion of shelves, from the coasts out to the foot of the continental slopes, only ranges between about 9.1 and 17.7%. Furthermore, the derived hypsometric curves show that most of the Arctic Ocean shelf seas besides the Barents Sea, Beaufort Sea, and the shelf off northern Greenland have a similar shape, with the largest seafloor area between 0 and 50 m. The East Siberian and Laptev seas, in particular, show area distributions concentrated in this shallow depth range, and together with the Chukchi Sea they form a large flat shallow shelf province composing as much as 22% of the entire Arctic Ocean area but only 1% of the volume. This implies that the circulation in the Arctic Ocean might be very sensitive to eustatic sea level changes. One of the aims with this work is to make up-to-date high-resolution area and volume calculations for the Arctic Ocean at various depths available for download.

271 citations

Journal ArticleDOI
TL;DR: This paper used detrital zircon geochronology, tephro-and magnetostratigraphy, along with analyses of past river flow recorded in sedimentary rocks from the Rukwa Rift Basin, Tanzania, to constrain the timing of rifting, magmatism and drainage development in this part of the western branch.
Abstract: The East African Rift System transects the anomalously high-elevation Ethiopian and East African plateaux that together form part of the 6,000-km-long African superswell structure. Rifting putatively developed as a result of mantle plume activity that initiated under eastern Africa. The mantle activity has caused topographic uplift that has been connected to African Cenozoic climate change and faunal evolution. The rift is traditionally interpreted to be composed of two distinct segments: an older, volcanically active eastern branch and a younger, less volcanic western branch. Here, we show that initiation of rifting in the western branch began more than 14 million years earlier than previously thought, contemporaneously with the eastern branch. We use a combination of detrital zircon geochronology, tephro- and magnetostratigraphy, along with analyses of past river flow recorded in sedimentary rocks from the Rukwa Rift Basin, Tanzania, to constrain the timing of rifting, magmatism and drainage development in this part of the western branch. We find that rift-related volcanism and lake development had begun by about 25 million years ago. These events were preceded by pediment development and a fluvial drainage reversal that we suggest records the onset of topographic uplift caused by the African superswell. We conclude that uplift of eastern Africa was more widespread and synchronous than previously recognized.

271 citations

Journal ArticleDOI
TL;DR: In this paper, the authors found that perceived levels of social support predicted 24% of the variance in resilience gain scores, with participants' ratings of the least supportive group member being the best predictor.
Abstract: Adventure education philosophers have argued that controlled exposure to challenge can enhance participants' psychological resilience. This study supports this claim, demonstrating significantly greater gains in psychological resilience for 41 young adults participating in 22-day Outward Bound programs than in a control group. All Outward Bound participants reported positive changes in their resilience and their overall change effect size was large. Perceived levels of social support predicted 24% of the variance in resilience gain scores, with participants' ratings of the least supportive group member being the best predictor. The findings for enhanced resilience and the important role of social support warrant wider investigation. In promoting psychological resilience adventure educators are alerted to the importance of facilitating positive interpersonal relations and minimising the detrimental impact of the diverse needs of group members.

271 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used a simple model of CH4 and CO2 pools in the atmosphere to extend this analysis to quantify the dynamics, over years to millennia, of the net radiative forcing impact of a peatland that continuously emits CH4, and sequesters C.
Abstract: [1] Northern peatlands sequester carbon and emit methane, and thus have both cooling and warming impacts on the climate system through their influence on atmospheric burdens of CO2 and CH4. These competing impacts are usually compared by the global warming potential (GWP) methodology, which determines the equivalent CO2 annual emission that would have the same integrated radiative forcing impact over a chosen time horizon as the annual CH4 emission. We use a simple model of CH4 and CO2 pools in the atmosphere to extend this analysis to quantify the dynamics, over years to millennia, of the net radiative forcing impact of a peatland that continuously emits CH4 and sequesters C. We find that for observed ratios of CH4 emission to C sequestration (roughly 0.1–2 mol mol−1), the radiative forcing impact of a northern peatland begins, at peatland formation, as a net warming that peaks after about 50 years, remains a diminishing net warming for the next several hundred to several thousand years, depending on the rate of C sequestration, and thereafter is or will be an ever increasing net cooling impact. We then use the model to evaluate the radiative forcing impact of various changes in CH4 and/or CO2 emissions. In all cases, the impact of a change in CH4 emissions dominates the radiative forcing impact in the first few decades, and then the impact of the change in CO2 emissions slowly exerts its influence.

270 citations

Journal ArticleDOI
TL;DR: In this article, the IAU/IAG Working Group on Cartographic Coordinates and Rotational Elements revises tables giving the directions of the poles of rotation and the prime meridians of the planets, satellites, minor planets, and comets.
Abstract: Every three years the IAU/IAG Working Group on Cartographic Coordinates and Rotational Elements revises tables giving the directions of the poles of rotation and the prime meridians of the planets, satellites, minor planets, and comets. This report introduces improved values for the pole and rotation rate of Pluto, Charon, and Phoebe, the pole of Jupiter, the sizes and shapes of Saturn satellites and Charon, and the poles, rotation rates, and sizes of some minor planets and comets. A high precision realization for the pole and rotation rate of the Moon is provided. The expression for the Sun’s rotation has been changed to be consistent with the planets and to account for light travel time

269 citations


Authors

Showing all 9489 results

NameH-indexPapersCitations
Derek R. Lovley16858295315
Peter B. Reich159790110377
Jerry M. Melillo13438368894
Katja Klein129149987817
David Finkelhor11738258094
Howard A. Stone114103364855
James O. Hill11353269636
Tadayuki Takahashi11293257501
Howard Eichenbaum10827944172
John D. Aber10720448500
Andrew W. Strong9956342475
Charles T. Driscoll9755437355
Andrew D. Richardson9428232850
Colin A. Chapman9249128217
Nicholas W. Lukacs9136734057
Network Information
Related Institutions (5)
University of Maryland, College Park
155.9K papers, 7.2M citations

94% related

Pennsylvania State University
196.8K papers, 8.3M citations

94% related

University of Colorado Boulder
115.1K papers, 5.3M citations

92% related

Michigan State University
137K papers, 5.6M citations

92% related

Texas A&M University
164.3K papers, 5.7M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202351
2022183
20211,148
20201,128
20191,140
20181,089