scispace - formally typeset
Search or ask a question
Institution

University of New Hampshire

EducationDurham, New Hampshire, United States
About: University of New Hampshire is a education organization based out in Durham, New Hampshire, United States. It is known for research contribution in the topics: Population & Solar wind. The organization has 9379 authors who have published 24025 publications receiving 1020112 citations. The organization is also known as: UNH.


Papers
More filters
Proceedings Article
08 Aug 1994
TL;DR: Evidence contradicting both pieces of conventional wisdom is presented, and renewed consideration of an approach which fully maintains arc consistency during backtrack search is suggested.
Abstract: Constraint satisfaction problems have wide application in artificial intelligence. They involve finding values for problem variables where the values must be consistent in that they satisfy restrictions on which combinations of values are allowed. Two standard techniques used in solving such problems are backtrack search and consistency inference. Conventional wisdom in the constraint satisfaction community suggests: 1) using consistency inference as preprocessing before search to prune values from consideration reduces subsequent search effort and 2) using consistency inference during search to prune values from consideration is best done at the limited level embodied in the forward checking algorithm. We present evidence contradicting both pieces of conventional wisdom, and suggesting renewed consideration of an approach which fully maintains arc consistency during backtrack search.

430 citations

Journal ArticleDOI
21 Jan 2011-Science
TL;DR: This methane release simulates a rapid and relatively short-term natural release from hydrates into deep water and suggests that a vigorous deepwater bacterial bloom respired nearly all the released methane within this time, and that by analogy, large-scale releases of methane from hydrate in the deep ocean are likely to be met by a similarly rapid methanotrophic response.
Abstract: Methane was the most abundant hydrocarbon released during the 2010 Deepwater Horizon oil spill in the Gulf of Mexico. Beyond relevancy to this anthropogenic event, this methane release simulates a rapid and relatively short-term natural release from hydrates into deep water. Based on methane and oxygen distributions measured at 207 stations throughout the affected region, we find that within ~120 days from the onset of release ~3.0 × 1010 to 3.9 × 1010 moles of oxygen were respired, primarily by methanotrophs, and left behind a residual microbial community containing methanotrophic bacteria. We suggest that a vigorous deepwater bacterial bloom respired nearly all the released methane within this time, and that by analogy, large-scale releases of methane from hydrate in the deep ocean are likely to be met by a similarly rapid methanotrophic response.

430 citations

Journal ArticleDOI
TL;DR: A review of sea breeze system (SBS) research extending back 2500 years is provided in this article, focusing primarily on recent discoveries and impacts on air quality, including forcing mechanisms, structure and related phenomena, life cycle, forecasting, and impacts.
Abstract: [1] The sea breeze system (SBS) occurs at coastal locations throughout the world and consists of many spatially and temporally nested phenomena. Cool marine air propagates inland when a cross-shore mesoscale (2–2000 km) pressure gradient is created by daytime differential heating. The circulation is also characterized by rising currents at the sea breeze front and diffuse sinking currents well out to sea and is usually closed by seaward flow aloft. Coastal impacts include relief from oppressive hot weather, development of thunderstorms, and changes in air quality. This paper provides a review of SBS research extending back 2500 years but focuses primarily on recent discoveries. We address SBS forcing mechanisms, structure and related phenomena, life cycle, forecasting, and impacts on air quality.

429 citations

Journal ArticleDOI
TL;DR: In this paper, a series of chronic nitrogen additions in two contrasting forest types (red pine plantation and mixed hardwood stand) were designed as a core experiment of the Harvard Forest (HF) Long-term Ecological Research (LTER) program.

429 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of increased diversity in an agroecosystem, where plant diversity is increased over time through crop rotation, were tested for the effect of aboveground biodiversity on belowground communities and processes.
Abstract: Biodiversity loss, an important consequence of agricultural intensification, can lead to reductions in agroecosystem functions and services. Increasing crop diversity through rotation may alleviate these negative consequences by restoring positive aboveground–belowground interactions. Positive impacts of aboveground biodiversity on belowground communities and processes have primarily been observed in natural systems. Here, we test for the effects of increased diversity in an agroecosystem, where plant diversity is increased over time through crop rotation. As crop diversity increased from one to five species, distinct soil microbial communities were related to increases in soil aggregation, organic carbon, total nitrogen, microbial activity and decreases in the carbon-to-nitrogen acquiring enzyme activity ratio. This study indicates positive biodiversity– function relationships in agroecosystems, driven by interactions between rotational and microbial diversity. By increasing the quantity, quality and chemical diversity of residues, high diversity rotations can sustain soil biological communities, with positive effects on soil organic matter and soil fertility.

429 citations


Authors

Showing all 9489 results

NameH-indexPapersCitations
Derek R. Lovley16858295315
Peter B. Reich159790110377
Jerry M. Melillo13438368894
Katja Klein129149987817
David Finkelhor11738258094
Howard A. Stone114103364855
James O. Hill11353269636
Tadayuki Takahashi11293257501
Howard Eichenbaum10827944172
John D. Aber10720448500
Andrew W. Strong9956342475
Charles T. Driscoll9755437355
Andrew D. Richardson9428232850
Colin A. Chapman9249128217
Nicholas W. Lukacs9136734057
Network Information
Related Institutions (5)
University of Maryland, College Park
155.9K papers, 7.2M citations

94% related

Pennsylvania State University
196.8K papers, 8.3M citations

94% related

University of Colorado Boulder
115.1K papers, 5.3M citations

92% related

Michigan State University
137K papers, 5.6M citations

92% related

Texas A&M University
164.3K papers, 5.7M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202351
2022183
20211,148
20201,128
20191,140
20181,089