scispace - formally typeset
Search or ask a question
Institution

University of New Mexico

EducationAlbuquerque, New Mexico, United States
About: University of New Mexico is a education organization based out in Albuquerque, New Mexico, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 28870 authors who have published 64767 publications receiving 2578371 citations. The organization is also known as: UNM & Universitatis Novus Mexico.


Papers
More filters
Journal ArticleDOI
TL;DR: A delay in the initiation of fluconazole therapy in hospitalized patients with candidemia significantly impacted mortality, and new methods to avoid delays in appropriate antifungal therapy are needed.
Abstract: BACKGROUND Inadequate antimicrobial treatment is an independent determinant of hospital mortality, and fungal bloodstream infections are among the types of infection with the highest rates of inappropriate initial treatment. Because of significant potential for reducing high mortality rates, we sought to assess the impact of delayed treatment across multiple study sites. The goals our analyses were to establish the frequency and duration of delayed antifungal treatment and to evaluate the relationship between treatment delay and mortality. METHODS We conducted a retrospective cohort study of patients with candidemia from 4 medical centers who were prescribed fluconazole. Time to initiation of fluconazole therapy was calculated by subtracting the date on which fluconazole therapy was initiated from the culture date of the first blood sample positive for yeast. RESULTS A total of 230 patients (51% male; mean age +/- standard deviation, 56 +/- 17 years) were identified; 192 of these had not been given prior treatment with fluconazole. Patients most commonly had nonsurgical hospital admission (162 patients [70%]) with a central line catheter (193 [84%]), diabetes (68 [30%]), or cancer (54 [24%]). Candida species causing infection included Candida albicans (129 patients [56%]), Candida glabrata (38 [16%]), Candida parapsilosis (25 [11%]), or Candida tropicalis (15 [7%]). The number of days to the initiation of antifungal treatment was 0 (92 patients [40%]), 1 (38 [17%]), 2 (33 [14%]) or > or = 3 (29 [12%]). Mortality rates were lowest for patients who began therapy on day 0 (14 patients [15%]) followed by patients who began on day 1 (9 [24%]), day 2 (12 [37%]), or day > or = 3 (12 [41%]) (P = .0009 for trend). Multivariate logistic regression was used to calculate independent predictors of mortality, which include increased time until fluconazole initiation (odds ratio, 1.42; P < .05) and Acute Physiology and Chronic Health Evaluation II score (1-point increments; odds ratio, 1.13; P < .05). CONCLUSION A delay in the initiation of fluconazole therapy in hospitalized patients with candidemia significantly impacted mortality. New methods to avoid delays in appropriate antifungal therapy, such as rapid diagnostic tests or identification of unique risk factors, are needed.

1,072 citations

Journal ArticleDOI
TL;DR: All-trans-retinoic acid as induction or maintenance treatment improves disease-free and overall survival as compared with chemotherapy alone and should be included in the treatment of acute promyelocytic leukemia.
Abstract: Background All-trans-retinoic acid induces complete remission in acute promyelocytic leukemia. However, it is not clear whether induction therapy with all-trans-retinoic acid is superior to chemotherapy alone or whether maintenance treatment with all-trans-retinoic acid improves outcome. Methods Three hundred forty-six patients with previously untreated acute promyelocytic leukemia were randomly assigned to receive all-trans-retinoic acid or daunorubicin plus cytarabine as induction treatment. Patients who had a complete remission received consolidation therapy consisting of one cycle of treatment identical to the induction chemotherapy, then high-dose cytarabine plus daunorubicin. Patients still in complete remission after two cycles of consolidation therapy were then randomly assigned to maintenance treatment with all-trans-retinoic acid or to observation. Results Of the 174 patients treated with chemotherapy, 120 (69 percent) had a complete remission, as did 124 of the 172 (72 percent) given all-trans-...

1,053 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present an introduction to ionic polymer-metal composites and some mathematical modeling pertaining to them and discuss a number of recent findings in connection with ion-exchange polymer metal composites (IPMCS) as biomimetic sensors and actuators.
Abstract: This paper presents an introduction to ionic polymer-metal composites and some mathematical modeling pertaining to them. It further discusses a number of recent findings in connection with ion-exchange polymer-metal composites (IPMCS) as biomimetic sensors and actuators. Strips of these composites can undergo large bending and flapping displacement if an electric field is imposed across their thickness. Thus, in this sense they are large motion actuators. Conversely by bending the composite strip, either quasi-statically or dynamically, a voltage is produced across the thickness of the strip. Thus, they are also large motion sensors. The output voltage can be calibrated for a standard size sensor and correlated to the applied loads or stresses. They can be manufactured and cut in any size and shape. In this paper first the sensing capability of these materials is reported. The preliminary results show the existence of a linear relationship between the output voltage and the imposed displacement for almost all cases. Furthermore, the ability of these IPMCs as large motion actuators and robotic manipulators is presented. Several muscle configurations are constructed to demonstrate the capabilities of these IPMC actuators. This paper further identifies key parameters involving the vibrational and resonance characteristics of sensors and actuators made with IPMCS. When the applied signal frequency varies, so does the displacement up to a critical frequency called the resonant frequency where maximum deformation is observed, beyond which the actuator response is diminished. A data acquisition system was used to measure the parameters involved and record the results in real time basis. Also the load characterizations of the IPMCs were measured and it was shown that these actuators exhibit good force to weight characteristics in the presence of low applied voltages. Finally reported are the cryogenic properties of these muscles for potential utilization in an outer space environment of a few Torrs and temperatures of the order of - 140 degrees Celsius. These muscles are shown to work quite well in such harsh cryogenic environments and thus present a great potential as sensors and actuators that can operate at cryogenic temperatures.

1,050 citations

Journal ArticleDOI
TL;DR: An overview of current approaches for utilizing ICA to make group inferences with a focus upon the group ICA approach implemented in the GIFT software and an overview of the use of I CA to combine or fuse multimodal data are provided.

1,046 citations

Journal ArticleDOI
TL;DR: In this article, a multiple regression model was used to investigate the relationship between pH and phenol oxidase and peroxidase activity in soil organic matter, and the results showed that high in situ oxidative activities limit organic matter accumulation and low in situ oxidase activity promotes organic matter storage.
Abstract: Extracellular enzymes mediate the degradation, transformation and mineralization of soil organic matter. The activity of cellulases, phosphatases and other hydrolases has received extensive study and in many cases stoichiometric relationships and responses to disturbances are well established. In contrast, phenol oxidase and peroxidase activities, which are often uncorrelated with hydrolase activities, have been measured in only a small subset of soil enzyme studies. These enzymes are expressed for a variety of purposes including ontogeny, defense and the acquisition of carbon and nitrogen. Through excretion or lysis, these enzymes enter the environment where their aggegrate activity mediates key ecosystem functions of lignin degradation, humification, carbon mineralization and dissolved organic carbon export. Phenol oxidases and peroxidases are less stable in the environment than extracellular hydrolases, especially when associated with organic particles. Activities are also affected, positively and negatively, by interaction with mineral surfaces. High spatiotemporal variation obscures their relationships with environmental variables and ecological process. Across ecosystems, phenol oxidase and peroxidase activities generally increase with soil pH, a finding not predicted from the pH optima of purified enzymes. Activities associated with plant litter and particulate organic matter often correlate with decomposition rates and potential activities generally increase with the lignin and secondary compound content of the material. At the ecosystem scale, nitrogen amendment alters the expression of phenol oxidase and peroxidase enzymes more broadly than culture studies imply and these responses correlate with positive and negative changes in litter decomposition rates and soil organic matter content. At the global scale, N amendment of basidiomycete-dominated soils of temperate and boreal forest ecoystems often leads to losses of oxidative enzyme activity, while activities in grassland soils dominated by glomeromycota and ascomycetes show little net response. Land use that leads to loss of soil organic matter tends to increase oxidative activities. Across ecosystems, soil organic matter content is not correlated with mean potential phenol oxidase and peroxidase activities. A multiple regression model that includes soil pH, mean annual temperature, mean annual precipitation and potential phenol oxidase activity accounts for 37% of the variation in soil organic matter (SOM) content across ecosystems (n = 63); a similar model for peroxidase activity describes 32% of SOM variance (n = 43). Analysis of residual variation suggest that suites of interacting factors create both positive and negative feedbacks on soil organic matter storage. Soils with high oxygen availability, pH and mineral activity tend to be substrate limited: high in situ oxidative activities limit soil organic matter accumulation. Soils with opposing characteristics are activity limited: low in situ oxidative activities promote soil organic matter storage.

1,034 citations


Authors

Showing all 29120 results

NameH-indexPapersCitations
Bruce S. McEwen2151163200638
David Miller2032573204840
Jing Wang1844046202769
Paul M. Thompson1832271146736
David A. Weitz1781038114182
David R. Williams1782034138789
John A. Rogers1771341127390
George F. Koob171935112521
John D. Minna169951106363
Carlos Bustamante161770106053
Lewis L. Lanier15955486677
Joseph Wang158128298799
John E. Morley154137797021
Fabian Walter14699983016
Michael F. Holick145767107937
Network Information
Related Institutions (5)
University of California, San Diego
204.5K papers, 12.3M citations

96% related

University of Michigan
342.3K papers, 17.6M citations

96% related

University of Minnesota
257.9K papers, 11.9M citations

96% related

University of Washington
305.5K papers, 17.7M citations

96% related

University of California, Los Angeles
282.4K papers, 15.7M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202390
2022595
20213,060
20203,048
20192,779
20182,729