scispace - formally typeset
Search or ask a question
Institution

University of New Mexico

EducationAlbuquerque, New Mexico, United States
About: University of New Mexico is a education organization based out in Albuquerque, New Mexico, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 28870 authors who have published 64767 publications receiving 2578371 citations. The organization is also known as: UNM & Universitatis Novus Mexico.


Papers
More filters
Journal ArticleDOI
J. Abraham1, P. Abreu2, Marco Aglietta3, C. Aguirre  +449 moreInstitutions (69)
09 Nov 2007-Science
TL;DR: In this article, the authors demonstrate that there is a correlation between the arrival directions of cosmic rays with energy above 6 x 10{sup 19} eV and the positions of active galactic nuclei lying within 75 Mpc.
Abstract: Using data collected at the Pierre Auger Observatory during the past 3.7 years, we demonstrate that there is a correlation between the arrival directions of cosmic rays with energy above {approx} 6 x 10{sup 19} eV and the positions of active galactic nuclei (AGN) lying within {approx} 75 Mpc. We reject the hypothesis of an isotropic distribution of these cosmic rays at over 99% confidence level from a prescribed a priori test. The correlation we observe is compatible with the hypothesis that the highest energy particles originate from nearby extragalactic sources whose flux has not been significantly reduced by interaction with the cosmic background radiation. AGN or objects having a similar spatial distribution are possible sources.

798 citations

Journal ArticleDOI
08 May 1997-Nature
TL;DR: It is shown that two independent methods of body-mass estimation yield concordant results when applied to Pleistocene Homo specimens, and on the basis of an analysis of 163 individuals, body mass in Pleistsocene Homo averaged significantly (about 10%) larger than a representative sample of living humans.
Abstract: Many dramatic changes in morphology within the genus Homo have occurred over the past 2 million years or more, including large increases in absolute brain size and decreases in postcanine dental size and skeletal robusticity. Body mass, as the 'size' variable against which other morphological features are usually judged, has been important for assessing these changes1–5. Yet past body mass estimates for Pleistocene Homo have varied greatly, sometimes by as much as 50% for the same individuals2,3,6–12. Here we show that two independent methods of body-mass estimation yield concordant results when applied to Pleistocene Homo specimens. On the basis of an analysis of 163 individuals, body mass in Pleistocene Homo averaged significantly (about 10%) larger than a representative sample of living humans. Relative to body mass, brain mass in late archaic H. sapiens (Neanderthals) was slightly smaller than in early 'anatomically modern' humans, but the major increase in encephalization within Homo occurred earlier during the Middle Pleistocene (600–150 thousand years before present (kyr BP)), preceded by a long period of stasis extending through the Early Pleistocene (1,800 kyr BP).

793 citations

Journal ArticleDOI
TL;DR: Banded iron-formations (BIFs) occur in the Precambrian geologic record over a wide time span as mentioned in this paper and are part of Archean cratons and range in age from about 3.5 until 2.5 Ga.
Abstract: Banded iron-formations (BIFs) occur in the Precambrian geologic record over a wide time span. Beginning at 3.8 Ga (Isua, West Greenland), they are part of Archean cratons and range in age from about 3.5 until 2.5 Ga. Their overall volume reaches a maximum at about 2.5 Ga (iron-formations in the Hamersley Basin of Western Australia) and they disappear from the geologic record at about 1.8 Ga, only to reappear between 0.8 and 0.6 Ga. The stratigraphic sequences in which BIFs occur are highly variable. Most Archean iron-formations are part of greenstone belts that have been deformed, metamorphosed, and dismembered. This makes reconstruction of the basinal setting of such BIFs very difficult. The general lack of metamorphism and deformation of extensive BIFs of the Hamersley Range of Western Australia and the Transvaal Supergroup of South Africa allow for much better evaluations of original basinal settings. Most Archean iron-formations show fine laminations and/or microbanding. Such microbanding is especially well developed in the Brockman Iron Formation of Western Australia, where it has been interpreted as chemical varves, or annual layers of sedimentation. BIFs ranging in age from 2.2 Ga to about 1.8 Ga (e.g., those of the Lake Superior region, U.S.A., Labrador Trough, Canada, and the Nabberu Basin of Western Australia) commonly exhibit granular textures and lack microbanding. The mineralogy of the least metamorphosed BIFs consists of combinations of the following minerals: chert, magnetite, hematite, carbonates (most commonly siderite and members of the dolomite-ankerite series), greenalite, stilpnomelane, and riebeckite, and locally pyrite. Minnesotaite is a common, very low-grade metamorphic reaction product. The Eh-pH stability fields of the above minerals (and/or their precursors) indicate anoxic conditions for the original depositional environment. The average bulk chemistry of BIFs, from 3.8 through 1.8 Ga in age, is very similar. They are rich in total Fe (ranging from about 20 to 40 wt%) and SiO2 (ranging from 43 to 56 wt%). CaO and MgO contents range from 1.75 to 9.0 and from 1.20 to 6.7 wt%, respectively. Al2O3 contents are very low, ranging from 0.09 to 1.8 wt%. These chemical values show that they are clean chemical sediments devoid of detrital input. Only the Neoproterozoic iron-formations (of 0.8 to 0.6 Ga in age) have very different mineralogical and chemical make-ups. They consist mainly of chert and hematite, with minor carbonates. The rare-earth element profiles of almost all BIFs,with generally pronounced positive Eu anomalies, indicate that the source of Fe and Si was the result of deep ocean hydrothermal activity admixed with sea water. The prograde metamorphism of iron-formations produces sequentially Fe-amphiboles, then Fe-pyroxenes, and finally (at highest grade) Fe-olivine-containing assemblages. Such metamorphic reactions are isochemical except for decarbonation and dehydration. The common fine lamination (and/or microbanding) as well as the lack of detrital components in most BIFs suggest that such are the result of deposition, below wave base, in the deeper parts of ocean basins. Those with granular textures are regarded as the result of deposition in shallow water, platformal areas. Carbon isotope data suggest that for a long period of time (from Archean to Early Proterozoic) the ocean basins were stratified with respect to δ13C (in carbonates) as well as organic carbon content. In Middle Proterozoic time (when granular BIFs appear) this stratification diminishes and is lost. The Neoproterozoic BIFs occur in stratigraphic sequences with glaciomarine deposits. These BIFs are the result of anoxic conditions that resulted from the stagnation in the oceans beneath a near-global ice cover, referred to as “Snowball Earth.” All of the most “primary” mineral assemblages appear to be the result of chemical precipitation under anoxic conditions. There are, as yet, no data to support that BIF precipitation was linked directly to microbial activity. The relative abundance of BIF throughout the Precambrian record is correlated with a possible curve for the evolution of the O2 content in the Precambrian atmosphere.

790 citations

Journal ArticleDOI
TL;DR: This work shows that in mammalian cells, autophagy has a hitherto unappreciated positive contribution to the biogenesis and secretion of the proinflammatory cytokine IL‐1β via an export pathway that depends on Atg5, inflammasome, at least one of the two mammalian Golgi reassembly stacking protein (GRASP) paralogues, GRASP55 (GORASP2) and Rab8a.
Abstract: Autophagy controls the quality and quantity of the eukaryotic cytoplasm while performing two evolutionarily highly conserved functions: cell-autonomous provision of energy and nutrients by cytosol autodigestion during starvation, and removal of defunct organelles and large aggregates exceeding the capacity of other cellular degradative systems. In contrast to these autodigestive processes, autophagy in yeast has additional, biogenesis functions. However, no equivalent biosynthetic roles have been described for autophagy in mammals. Here, we show that in mammalian cells, autophagy has a hitherto unappreciated positive contribution to the biogenesis and secretion of the proinflammatory cytokine IL-1β via an export pathway that depends on Atg5, inflammasome, at least one of the two mammalian Golgi reassembly stacking protein (GRASP) paralogues, GRASP55 (GORASP2) and Rab8a. This process, which is a type of unconventional secretion, expands the functional manifestations of autophagy beyond autodigestive and quality control roles in mammals. It enables a subset of cytosolic proteins devoid of signal peptide sequences, and thus unable to access the conventional pathway through the ER, to enter an autophagy-based secretory pathway facilitating their exit from the cytoplasm.

789 citations

Journal ArticleDOI
20 Nov 2014-Nature
TL;DR: A comparative transport study of several high-mobility conjugated polymers by field-effect-modulated Seebeck, transistor and sub-bandgap optical absorption measurements is reported, showing that in several of these polymers, the charge transport properties approach intrinsic disorder-free limits at which all molecular sites are thermally accessible.
Abstract: Measurements and simulations of several high-mobility conjugated polymers show that their charge transport properties reflect an almost complete lack of disorder in the polymers, despite their amorphous microstructures, resulting from the resilience of the planar polymer backbone conformations to side-chain disorder. So-called 'conjugated polymers' have attracted much interest in recent decades. They are organic macromolecules with covalent-bond-containing backbone structures that combine the flexibility and processibility of plastics with the useful electronic properties of semiconductors. Polymeric materials tend to be naturally disordered however, and such disorder ultimately limits their electronic performance. Deepak Venkateshvaran and colleagues now show that several of the better-performing conjugated polymers are actually behaving electronically as if they were free of disorder, despite their amorphous microstructure. With the aid of simulations, the authors identify the molecular origins of this surprising 'disorder-free' behaviour, and offer guidelines for how this might be engineered into other conjugated polymeric systems. Conjugated polymers enable the production of flexible semiconductor devices that can be processed from solution at low temperatures. Over the past 25 years, device performance has improved greatly as a wide variety of molecular structures have been studied1. However, one major limitation has not been overcome; transport properties in polymer films are still limited by pervasive conformational and energetic disorder2,3,4,5. This not only limits the rational design of materials with higher performance, but also prevents the study of physical phenomena associated with an extended π-electron delocalization along the polymer backbone. Here we report a comparative transport study of several high-mobility conjugated polymers by field-effect-modulated Seebeck, transistor and sub-bandgap optical absorption measurements. We show that in several of these polymers, most notably in a recently reported, indacenodithiophene-based donor–acceptor copolymer with a near-amorphous microstructure6, the charge transport properties approach intrinsic disorder-free limits at which all molecular sites are thermally accessible. Molecular dynamics simulations identify the origin of this long sought-after regime as a planar, torsion-free backbone conformation that is surprisingly resilient to side-chain disorder. Our results provide molecular-design guidelines for ‘disorder-free’ conjugated polymers.

786 citations


Authors

Showing all 29120 results

NameH-indexPapersCitations
Bruce S. McEwen2151163200638
David Miller2032573204840
Jing Wang1844046202769
Paul M. Thompson1832271146736
David A. Weitz1781038114182
David R. Williams1782034138789
John A. Rogers1771341127390
George F. Koob171935112521
John D. Minna169951106363
Carlos Bustamante161770106053
Lewis L. Lanier15955486677
Joseph Wang158128298799
John E. Morley154137797021
Fabian Walter14699983016
Michael F. Holick145767107937
Network Information
Related Institutions (5)
University of California, San Diego
204.5K papers, 12.3M citations

96% related

University of Michigan
342.3K papers, 17.6M citations

96% related

University of Minnesota
257.9K papers, 11.9M citations

96% related

University of Washington
305.5K papers, 17.7M citations

96% related

University of California, Los Angeles
282.4K papers, 15.7M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202390
2022595
20213,060
20203,048
20192,779
20182,729