scispace - formally typeset
Search or ask a question
Institution

University of New Mexico

EducationAlbuquerque, New Mexico, United States
About: University of New Mexico is a education organization based out in Albuquerque, New Mexico, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 28870 authors who have published 64767 publications receiving 2578371 citations. The organization is also known as: UNM & Universitatis Novus Mexico.


Papers
More filters
Journal ArticleDOI
Pelin Yilmaz1, Pelin Yilmaz2, Renzo Kottmann2, Dawn Field, Rob Knight3, Rob Knight4, James R. Cole5, Linda A. Amaral-Zettler6, Jack A. Gilbert7, Jack A. Gilbert8, Jack A. Gilbert9, Ilene Karsch-Mizrachi10, Anjanette Johnston10, Guy Cochrane, Robert Vaughan, Christopher I. Hunter, Joonhong Park11, Norman Morrison12, Philippe Rocca-Serra13, Peter Sterk, Manimozhiyan Arumugam, Mark J. Bailey, Laura K. Baumgartner3, Bruce W. Birren14, Martin J. Blaser15, Vivien Bonazzi10, Timothy F. Booth, Peer Bork, Frederic D. Bushman16, Pier Luigi Buttigieg1, Pier Luigi Buttigieg2, Patrick S. G. Chain5, Patrick S. G. Chain17, Patrick S. G. Chain18, Emily S. Charlson16, Elizabeth K. Costello3, Heather Huot-Creasy19, Peter Dawyndt20, Todd Z. DeSantis21, Noah Fierer3, Jed A. Fuhrman22, Rachel E. Gallery23, Dirk Gevers14, Richard A. Gibbs24, Inigo San Gil25, Antonio Gonzalez3, Jeffrey I. Gordon26, Robert P. Guralnick3, Wolfgang Hankeln2, Wolfgang Hankeln1, Sarah K. Highlander24, Philip Hugenholtz27, Janet K. Jansson17, Janet K. Jansson21, Andrew L. Kau26, Scott T. Kelley28, Jerry Kennedy3, Dan Knights3, Omry Koren29, Justin Kuczynski3, Nikos C. Kyrpides17, Robert Larsen3, Christian L. Lauber3, Teresa M. Legg3, Ruth E. Ley29, Catherine A. Lozupone3, Wolfgang Ludwig30, Donna Lyons3, Eamonn Maguire13, Barbara A. Methé31, Folker Meyer8, Brian D. Muegge26, Sara Nakielny3, Karen E. Nelson31, Diana R. Nemergut3, Josh D. Neufeld32, Lindsay K. Newbold, Anna Oliver, Norman R. Pace3, Giriprakash Palanisamy33, Jörg Peplies, Joseph F. Petrosino24, Lita M. Proctor10, Elmar Pruesse2, Elmar Pruesse1, Christian Quast2, Jeroen Raes34, Sujeevan Ratnasingham35, Jacques Ravel19, David A. Relman36, David A. Relman37, Susanna Assunta-Sansone13, Patrick D. Schloss, Lynn M. Schriml19, Rohini Sinha16, Michelle I. Smith26, Erica Sodergren26, Aymé Spor29, Jesse Stombaugh3, James M. Tiedje5, Doyle V. Ward14, George M. Weinstock26, Doug Wendel3, Owen White19, Andrew S. Whiteley, Andreas Wilke8, Jennifer R. Wortman19, Tanya Yatsunenko26, Frank Oliver Glöckner1, Frank Oliver Glöckner2 
TL;DR: To establish a unified standard for describing sequence data and to provide a single point of entry for the scientific community to access and learn about GSC checklists, the minimum information about any (x) sequence is presented (MIxS).
Abstract: Here we present a standard developed by the Genomic Standards Consortium (GSC) for reporting marker gene sequences—the minimum information about a marker gene sequence (MIMARKS). We also introduce a system for describing the environment from which a biological sample originates. The ‘environmental packages’ apply to any genome sequence of known origin and can be used in combination with MIMARKS and other GSC checklists. Finally, to establish a unified standard for describing sequence data and to provide a single point of entry for the scientific community to access and learn about GSC checklists, we present the minimum information about any (x) sequence (MIxS). Adoption of MIxS will enhance our ability to analyze natural genetic diversity documented by massive DNA sequencing efforts from myriad ecosystems in our ever-changing biosphere.

600 citations

Journal ArticleDOI
TL;DR: The results of this pooled analysis suggest that the two endometrial cancer types share many common etiologic factors, and the etiology of type II tumors may, therefore, not be completely estrogen independent, as previously believed.
Abstract: Purpose Endometrial cancers have long been divided into estrogen-dependent type I and the less common clinically aggressive estrogen-independent type II. Little is known about risk factors for type II tumors because most studies lack sufficient cases to study these much less common tumors separately. We examined whether so-called classical endometrial cancer risk factors also influence the risk of type II tumors. Patients and Methods Individual-level data from 10 cohort and 14 case-control studies from the Epidemiology of Endometrial Cancer Consortium were pooled. A total of 14,069 endometrial cancer cases and 35,312 controls were included. We classified endometrioid (n = 7,246), adenocarcinoma not otherwise specified (n = 4,830), and adenocarcinoma with squamous differentiation (n = 777) as type I tumors and serous (n = 508) and mixed cell (n = 346) as type II tumors. Results Parity, oral contraceptive use, cigarette smoking, age at menarche, and diabetes were associated with type I and type II tumors to...

599 citations

Journal ArticleDOI
TL;DR: The hypothesis that both adults and children have a species-typical adaptation to the problem of identifying and favoring healthy individuals and avoiding parasite-susceptible individuals is proposed, and it is proposed that this adaptation guides human decisions about nepotism and reciprocity in relation to physical attractiveness.
Abstract: It is hypothesized that human faces judged to be attractive by people possess two features—averageness and symmetry—that promoted adaptive mate selection in human evolutionary history by way of production of offspring with parasite resistance. Facial composites made by combining individual faces are judged to be attractive, and more attractive than the majority of individual faces. The composites possess both symmetry and averageness of features. Facial averageness may reflect high individual protein heterozygosity and thus an array of proteins to which parasites must adapt. Heterozygosity may be an important defense of long-lived hosts against parasites when it occurs in portions of the genome that do not code for the essential features of complex adaptations. In this case heterozygosity can create a hostile microenvironment for parasites without disrupting adaptation. Facial bilateral symmetry is hypothesized to affect positive beauty judgments because symmetry is a certification of overall phenotypic quality and developmental health, which may be importantly influenced by parasites. Certain secondary sexual traits are influenced by testosterone, a hormone that reduces immunocompetence. Symmetry and size of the secondary sexual traits of the face (e.g., cheek bones) are expected to correlate positively and advertise immunocompetence honestly and therefore to affect positive beauty judgments. Facial attractiveness is predicted to correlate with attractive, nonfacial secondary sexual traits; other predictions from the view that parasite-driven selection led to the evolution of psychological adaptations of human beauty perception are discussed. The view that human physical attractiveness and judgments about human physical attractiveness evolved in the context of parasite-driven selection leads to the hypothesis that both adults and children have a species-typical adaptation to the problem of identifying and favoring healthy individuals and avoiding parasite-susceptible individuals. It is proposed that this adaptation guides human decisions about nepotism and reciprocity in relation to physical attractiveness.

599 citations

Journal ArticleDOI
TL;DR: In this article, the integrity of freshwater ecosystems depends upon adequate quantity, quality, timing, and temporal variability of water flow, and these attributes impart relatively unique characteristics of productivity and biodiversity to each ecosystem.
Abstract: Human society has used freshwater from rivers, lakes, groundwater, and wetlands for many different urban, agricultural, and industrial activities, but in doing so has overlooked its value in supporting ecosystems. Freshwater is vital to human life and societal well-being, and thus its utilization for consumption, irrigation, and transport has long taken precedence over other commodities and services provided by freshwater ecosystems. However, there is growing recognition that functionally intact and biologically complex aquatic ecosystems provide many economically valuable services and long-term benefits to society. The short-term benefits include ecosystem goods and services, such as food supply, flood control, purification of human and industrial wastes, and habitat for plant and animal life—and these are costly, if not impossible, to replace. Long-term benefits include the sustained provision of those goods and services, as well as the adaptive capacity of aquatic ecosystems to respond to future environmental alterations, such as climate change. Thus, maintenance of the processes and properties that support freshwater ecosystem integrity should be included in debates over sustainable water resource allocation. The purpose of this report is to explain how the integrity of freshwater ecosystems depends upon adequate quantity, quality, timing, and temporal variability of water flow. Defining these requirements in a comprehensive but general manner provides a better foundation for their inclusion in current and future debates about allocation of water resources. In this way the needs of freshwater ecosystems can be legitimately recognized and addressed. We also recommend ways in which freshwater ecosystems can be protected, maintained, and restored. Freshwater ecosystem structure and function are tightly linked to the watershed or catchment of which they are a part. Because riverine networks, lakes, wetlands, and their connecting groundwaters, are literally the “sinks” into which landscapes drain, they are greatly influenced by terrestrial processes, including many human uses or modifications of land and water. Freshwater ecosystems, whether lakes, wetlands, or rivers, have specific requirements in terms of quantity, quality, and seasonality of their water supplies. Sustainability normally requires these systems to fluctuate within a natural range of variation. Flow regime, sediment and organic matter inputs, thermal and light characteristics, chemical and nutrient characteristics, and biotic assemblages are fundamental defining attributes of freshwater ecosystems. These attributes impart relatively unique characteristics of productivity and biodiversity to each ecosystem. The natural range of variation in each of these attributes is critical to maintaining the integrity and dynamic potential of aquatic ecosystems; therefore, management should allow for dynamic change. Piecemeal approaches cannot solve the problems confronting freshwater ecosystems. Scientific definitions of the requirements to protect and maintain aquatic ecosystems are necessary but insufficient for establishing the appropriate distribution between societal and ecosystem water needs. For scientific knowledge to be implemented science must be connected to a political agenda for sustainable development. We offer these recommendations as a beginning to redress how water is viewed and managed in the United States: (1) Frame national and regional water management policies to explicitly incorporate freshwater ecosystem needs, particularly those related to naturally variable flow regimes and to the linking of water quality with water quantity; (2) Define water resources to include watersheds, so that freshwaters are viewed within a landscape, or systems context; (3) Increase communication and education across disciplines, especially among engineers, hydrologists, economists, and ecologists to facilitate an integrated view of freshwater resources; (4) Increase restoration efforts, using well-grounded ecological principles as guidelines; (5) Maintain and protect the remaining freshwater ecosystems that have high integrity; and (6) Recognize the dependence of human society on naturally functioning ecosystems.

599 citations

Journal ArticleDOI
TL;DR: The latitudinal gradient in marine bacteria supports the hypothesis that the kinetics of metabolism, setting the pace for life, has strong influence on diversity.
Abstract: For two centuries, biologists have documented a gradient of animal and plant biodiversity from the tropics to the poles but have been unable to agree whether it is controlled primarily by productivity, temperature, or historical factors. Recent reports that find latitudinal diversity gradients to be reduced or absent in some unicellular organisms and attribute this to their high abundance and dispersal capabilities would suggest that bacteria, the smallest and most abundant organisms, should exhibit no latitudinal pattern of diversity. We used amplified ribosomal intergenic spacer analysis (ARISA) whole-assemblage genetic fingerprinting to quantify species richness in 103 near-surface samples of marine bacterial plankton, taken from tropical to polar in both hemispheres. We found a significant latitudinal gradient in richness. The data can help to evaluate hypotheses about the cause of the gradient. The correlations of richness with latitude and temperature were similarly strong, whereas correlations with parameters relating to productivity (chlorophyll, annual primary productivity, bacterial abundance) and other variables (salinity and distance to shore) were much weaker. Despite the high abundance and potentially high dispersal of bacteria, they exhibit geographic patterns of species diversity that are similar to those seen in other organisms. The latitudinal gradient in marine bacteria supports the hypothesis that the kinetics of metabolism, setting the pace for life, has strong influence on diversity.

597 citations


Authors

Showing all 29120 results

NameH-indexPapersCitations
Bruce S. McEwen2151163200638
David Miller2032573204840
Jing Wang1844046202769
Paul M. Thompson1832271146736
David A. Weitz1781038114182
David R. Williams1782034138789
John A. Rogers1771341127390
George F. Koob171935112521
John D. Minna169951106363
Carlos Bustamante161770106053
Lewis L. Lanier15955486677
Joseph Wang158128298799
John E. Morley154137797021
Fabian Walter14699983016
Michael F. Holick145767107937
Network Information
Related Institutions (5)
University of California, San Diego
204.5K papers, 12.3M citations

96% related

University of Michigan
342.3K papers, 17.6M citations

96% related

University of Minnesota
257.9K papers, 11.9M citations

96% related

University of Washington
305.5K papers, 17.7M citations

96% related

University of California, Los Angeles
282.4K papers, 15.7M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202390
2022595
20213,060
20203,049
20192,779
20182,729