scispace - formally typeset
Search or ask a question
Institution

University of New South Wales

EducationSydney, New South Wales, Australia
About: University of New South Wales is a education organization based out in Sydney, New South Wales, Australia. It is known for research contribution in the topics: Population & Poison control. The organization has 51197 authors who have published 153634 publications receiving 4880608 citations. The organization is also known as: UNSW & UNSW Australia.


Papers
More filters
Journal ArticleDOI
TL;DR: The rational design and synthesis of a new class of Co@N-C materials (C-MOF-C2-T) from a pair of enantiotopic chiral 3D MOFs by pyrolysis at temperature T is reported, exhibiting higher electrocatalytic activities for oxygen reduction and oxygen evolution reactions than that of commercial Pt/C and RuO2.
Abstract: Metal-organic frameworks (MOFs) and MOF-derived materials have recently attracted considerable interest as alternatives to noble-metal electrocatalysts. Herein, the rational design and synthesis of a new class of Co@N-C materials (C-MOF-C2-T) from a pair of enantiotopic chiral 3D MOFs by pyrolysis at temperature T is reported. The newly developed C-MOF-C2-900 with a unique 3D hierarchical rodlike structure, consisting of homogeneously distributed cobalt nanoparticles encapsulated by partially graphitized N-doped carbon rings along the rod length, exhibits higher electrocatalytic activities for oxygen reduction and oxygen evolution reactions (ORR and OER) than that of commercial Pt/C and RuO2 , respectively. Primary Zn-air batteries based on C-MOF-900 for the oxygen reduction reaction (ORR) operated at a discharge potential of 1.30 V with a specific capacity of 741 mA h gZn-1 under 10 mA cm-2 . Rechargeable Zn-air batteries based on C-MOF-C2-900 as an ORR and OER bifunctional catalyst exhibit initial charge and discharge potentials at 1.81 and 1.28 V (2 mA cm-2 ), along with an excellent cycling stability with no increase in polarization even after 120 h - outperform their counterparts based on noble-metal-based air electrodes. The resultant rechargeable Zn-air batteries are used to efficiently power electrochemical water-splitting systems, demonstrating promising potential as integrated green energy systems for practical applications.

720 citations

Journal ArticleDOI
TL;DR: Some of the milestones in research that have led to an increased awareness of the contribution of immune and inflammatory systems to neuropathic pain are reviewed and the role of immune cells and inflammatory mediators are reviewed.

720 citations

Journal ArticleDOI
Marlee A. Tucker1, Katrin Böhning-Gaese1, William F. Fagan2, John M. Fryxell3, Bram Van Moorter, Susan C. Alberts4, Abdullahi H. Ali, Andrew M. Allen5, Andrew M. Allen6, Nina Attias7, Tal Avgar8, Hattie L. A. Bartlam-Brooks9, Buuveibaatar Bayarbaatar10, Jerrold L. Belant11, Alessandra Bertassoni12, Dean E. Beyer13, Laura R. Bidner14, Floris M. van Beest15, Stephen Blake16, Stephen Blake10, Niels Blaum17, Chloe Bracis1, Danielle D. Brown18, P J Nico de Bruyn19, Francesca Cagnacci20, Francesca Cagnacci21, Justin M. Calabrese2, Justin M. Calabrese22, Constança Camilo-Alves23, Simon Chamaillé-Jammes24, André Chiaradia25, André Chiaradia26, Sarah C. Davidson27, Sarah C. Davidson16, Todd E. Dennis28, Stephen DeStefano29, Duane R. Diefenbach30, Iain Douglas-Hamilton31, Iain Douglas-Hamilton32, Julian Fennessy, Claudia Fichtel33, Wolfgang Fiedler16, Christina Fischer34, Ilya R. Fischhoff35, Christen H. Fleming2, Christen H. Fleming22, Adam T. Ford36, Susanne A. Fritz1, Benedikt Gehr37, Jacob R. Goheen38, Eliezer Gurarie2, Eliezer Gurarie39, Mark Hebblewhite40, Marco Heurich41, Marco Heurich42, A. J. Mark Hewison43, Christian Hof, Edward Hurme2, Lynne A. Isbell14, René Janssen, Florian Jeltsch17, Petra Kaczensky44, Adam Kane45, Peter M. Kappeler33, Matthew J. Kauffman38, Roland Kays46, Roland Kays47, Duncan M. Kimuyu48, Flávia Koch33, Flávia Koch49, Bart Kranstauber37, Scott D. LaPoint50, Scott D. LaPoint16, Peter Leimgruber22, John D. C. Linnell, Pascual López-López51, A. Catherine Markham52, Jenny Mattisson, Emília Patrícia Medici53, Ugo Mellone54, Evelyn H. Merrill8, Guilherme Miranda de Mourão55, Ronaldo Gonçalves Morato, Nicolas Morellet43, Thomas A. Morrison56, Samuel L. Díaz-Muñoz14, Samuel L. Díaz-Muñoz57, Atle Mysterud58, Dejid Nandintsetseg1, Ran Nathan59, Aidin Niamir, John Odden, Robert B. O'Hara60, Luiz Gustavo R. Oliveira-Santos7, Kirk A. Olson10, Bruce D. Patterson61, Rogério Cunha de Paula, Luca Pedrotti, Björn Reineking62, Björn Reineking63, Martin Rimmler, Tracey L. Rogers64, Christer Moe Rolandsen, Christopher S. Rosenberry65, Daniel I. Rubenstein66, Kamran Safi67, Kamran Safi16, Sonia Saïd, Nir Sapir68, Hall Sawyer, Niels Martin Schmidt15, Nuria Selva69, Agnieszka Sergiel69, Enkhtuvshin Shiilegdamba10, João P. Silva70, João P. Silva71, João P. Silva72, Navinder J. Singh6, Erling Johan Solberg, Orr Spiegel14, Olav Strand, Siva R. Sundaresan, Wiebke Ullmann17, Ulrich Voigt44, Jake Wall31, David W. Wattles29, Martin Wikelski16, Martin Wikelski67, Christopher C. Wilmers73, John W. Wilson74, George Wittemyer75, George Wittemyer31, Filip Zięba, Tomasz Zwijacz-Kozica, Thomas Mueller1, Thomas Mueller22 
Goethe University Frankfurt1, University of Maryland, College Park2, University of Guelph3, Duke University4, Radboud University Nijmegen5, Swedish University of Agricultural Sciences6, Federal University of Mato Grosso do Sul7, University of Alberta8, Royal Veterinary College9, Wildlife Conservation Society10, Mississippi State University11, Sao Paulo State University12, Michigan Department of Natural Resources13, University of California, Davis14, Aarhus University15, Max Planck Society16, University of Potsdam17, Middle Tennessee State University18, Mammal Research Institute19, Harvard University20, Edmund Mach Foundation21, Smithsonian Conservation Biology Institute22, University of Évora23, University of Montpellier24, Monash University25, Parks Victoria26, Ohio State University27, Fiji National University28, University of Massachusetts Amherst29, United States Geological Survey30, Save the Elephants31, University of Oxford32, German Primate Center33, Technische Universität München34, Institute of Ecosystem Studies35, University of British Columbia36, University of Zurich37, University of Wyoming38, University of Washington39, University of Montana40, University of Freiburg41, Bavarian Forest National Park42, University of Toulouse43, University of Veterinary Medicine Vienna44, University College Cork45, North Carolina Museum of Natural Sciences46, North Carolina State University47, Karatina University48, University of Lethbridge49, Lamont–Doherty Earth Observatory50, University of Valencia51, Stony Brook University52, International Union for Conservation of Nature and Natural Resources53, University of Alicante54, Empresa Brasileira de Pesquisa Agropecuária55, University of Glasgow56, New York University57, University of Oslo58, Hebrew University of Jerusalem59, Norwegian University of Science and Technology60, Field Museum of Natural History61, University of Grenoble62, University of Bayreuth63, University of New South Wales64, Pennsylvania Game Commission65, Princeton University66, University of Konstanz67, University of Haifa68, Polish Academy of Sciences69, University of Lisbon70, Instituto Superior de Agronomia71, University of Porto72, University of California, Santa Cruz73, University of Pretoria74, Colorado State University75
26 Jan 2018-Science
TL;DR: Using a unique GPS-tracking database of 803 individuals across 57 species, it is found that movements of mammals in areas with a comparatively high human footprint were on average one-half to one-third the extent of their movements in area with a low human footprint.
Abstract: Animal movement is fundamental for ecosystem functioning and species survival, yet the effects of the anthropogenic footprint on animal movements have not been estimated across species. Using a unique GPS-tracking database of 803 individuals across 57 species, we found that movements of mammals in areas with a comparatively high human footprint were on average one-half to one-third the extent of their movements in areas with a low human footprint. We attribute this reduction to behavioral changes of individual animals and to the exclusion of species with long-range movements from areas with higher human impact. Global loss of vagility alters a key ecological trait of animals that affects not only population persistence but also ecosystem processes such as predator-prey interactions, nutrient cycling, and disease transmission.

719 citations

Journal ArticleDOI
TL;DR: Evidence for the hypothesis that CIDs in energy metabolism, as reflected by resting metabolic rate (RMR), promote CID in behavior patterns that either provide net energy and consume energy, and a framework for linking together RMR, behavior, and life-history productivity is provided.
Abstract: Consistent individual differences (CIDs) in behavior are a widespread phenomenon in animals, but the proximate reasons for them are unresolved. We discuss evidence for the hypothesis that CIDs in energy metabolism, as reflected by resting metabolic rate (RMR), promote CIDs in behavior patterns that either provide net energy (e.g. foraging activity), and/or consume energy (e.g. courtship activity). In doing so, we provide a framework for linking together RMR, behavior, and life-history productivity. Empirical studies suggest that RMR is (a) related to the capacity to generate energy, (b) repeatable, and (c) correlated with behavioral output (e.g. aggressiveness) and productivity (e.g. growth). We conclude by discussing future research directions to clarify linkages between behavior and energy metabolism in this emerging research area.

716 citations

Journal ArticleDOI
TL;DR: This article reviewed recent empirical findings associated with the expertise reversal effect, their interpretation within cognitive load theory, relations to ATI studies, implications for the design of learner-tailored instructional systems, and some recent experimental attempts of implementing these findings into realistic adaptive learning environments.
Abstract: The interactions between levels of learner prior knowledge and effectiveness of different instructional techniques and procedures have been intensively investigated within a cognitive load framework since mid-90s. This line of research has become known as the expertise reversal effect. Apart from their cognitive load theory-based prediction and explanation, patterns of empirical findings on the effect fit well those in studies of Aptitude Treatment Interactions (ATI) that were originally initiated in mid-60s. This paper reviews recent empirical findings associated with the expertise reversal effect, their interpretation within cognitive load theory, relations to ATI studies, implications for the design of learner-tailored instructional systems, and some recent experimental attempts of implementing these findings into realistic adaptive learning environments.

716 citations


Authors

Showing all 51897 results

NameH-indexPapersCitations
Ronald C. Kessler2741332328983
Nicholas G. Martin1921770161952
John C. Morris1831441168413
Richard S. Ellis169882136011
Ian J. Deary1661795114161
Nicholas J. Talley158157190197
Wolfgang Wagner1562342123391
Bruce D. Walker15577986020
Xiang Zhang1541733117576
Ian Smail15189583777
Rui Zhang1512625107917
Marvin Johnson1491827119520
John R. Hodges14981282709
Amartya Sen149689141907
J. Fraser Stoddart147123996083
Network Information
Related Institutions (5)
University of Melbourne
174.8K papers, 6.3M citations

97% related

University of Manchester
168K papers, 6.4M citations

94% related

McGill University
162.5K papers, 6.9M citations

93% related

University College London
210.6K papers, 9.8M citations

93% related

University of British Columbia
209.6K papers, 9.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023389
20221,183
202111,342
202011,235
20199,891
20189,145