scispace - formally typeset
Search or ask a question
Institution

University of New South Wales

EducationSydney, New South Wales, Australia
About: University of New South Wales is a education organization based out in Sydney, New South Wales, Australia. It is known for research contribution in the topics: Population & Poison control. The organization has 51197 authors who have published 153634 publications receiving 4880608 citations. The organization is also known as: UNSW & UNSW Australia.


Papers
More filters
Journal ArticleDOI
TL;DR: The vanadium redox flow battery (VRB) is one of the most promising electrochemical energy storage systems deemed suitable for a wide range of renewable energy applications that are emerging rapidly to reduce the carbon footprint of electricity generation as discussed by the authors.

659 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used parallel factor analysis (PARAFAC) of fluorescence spectra collected on trans-oceanic cruises in the Pacific and Atlantic oceans to investigate the optical characteristics of dissolved organic matter in waters with limited freshwater influence (salinity > 30).

658 citations

Journal ArticleDOI
TL;DR: The results provide compelling evidence that investment in radiotherapy not only enables treatment of large numbers of cancer cases to save lives, but also brings positive economic benefits.
Abstract: Summary Radiotherapy is a critical and inseparable component of comprehensive cancer treatment and care. For many of the most common cancers in low-income and middle-income countries, radiotherapy is essential for effective treatment. In high-income countries, radiotherapy is used in more than half of all cases of cancer to cure localised disease, palliate symptoms, and control disease in incurable cancers. Yet, in planning and building treatment capacity for cancer, radiotherapy is frequently the last resource to be considered. Consequently, worldwide access to radiotherapy is unacceptably low. We present a new body of evidence that quantifies the worldwide coverage of radiotherapy services by country. We show the shortfall in access to radiotherapy by country and globally for 2015–35 based on current and projected need, and show substantial health and economic benefits to investing in radiotherapy. The cost of scaling up radiotherapy in the nominal model in 2015–35 is US$26·6 billion in low-income countries, $62·6 billion in lower-middle-income countries, and $94·8 billion in upper-middle-income countries, which amounts to $184·0 billion across all low-income and middle-income countries. In the efficiency model the costs were lower: $14·1 billion in low-income, $33·3 billion in lower-middle-income, and $49·4 billion in upper-middle-income countries—a total of $96·8 billion. Scale-up of radiotherapy capacity in 2015–35 from current levels could lead to saving of 26·9 million life-years in low-income and middle-income countries over the lifetime of the patients who received treatment. The economic benefits of investment in radiotherapy are very substantial. Using the nominal cost model could produce a net benefit of $278·1 billion in 2015–35 ($265·2 million in low-income countries, $38·5 billion in lower-middle-income countries, and $239·3 billion in upper-middle-income countries). Investment in the efficiency model would produce in the same period an even greater total benefit of $365·4 billion ($12·8 billion in low-income countries, $67·7 billion in lower-middle-income countries, and $284·7 billion in upper-middle-income countries). The returns, by the human-capital approach, are projected to be less with the nominal cost model, amounting to $16·9 billion in 2015–35 (–$14·9 billion in low-income countries; –$18·7 billion in lower-middle-income countries, and $50·5 billion in upper-middle-income countries). The returns with the efficiency model were projected to be greater, however, amounting to $104·2 billion (–$2·4 billion in low-income countries, $10·7 billion in lower-middle-income countries, and $95·9 billion in upper-middle-income countries). Our results provide compelling evidence that investment in radiotherapy not only enables treatment of large numbers of cancer cases to save lives, but also brings positive economic benefits.

658 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reported the recent improvements in the energy conversion efficiency of solar cells on magnetically-confined Czochralski grown (MCZ) and float zone (FZ) silicon substrates at the University of New South Wales.
Abstract: This paper reports the recent improvements in the energy conversion efficiencies of solar cells on magnetically-confined Czochralski grown (MCZ) and float zone (FZ) silicon substrates at the University of New South Wales. A PERT (passivated emitter, rear totally-diffused) cell structure has been used to reduce the cell series resistance from higher resistivity substrates. The total rear boron diffusion in this PERT structure appears to improve the surface passivation quality of MCZ and some FZ substrates. Hence, higher open-circuit voltages were observed for some PERT cells. One of these cells on MCZ substrates demonstrated 24·5% energy conversion efficiency at Sandia National Laboratories under the standard global spectrum (100 mW/cm2) at 25°C. This is the highest efficiency ever reported for a MCZ silicon solar cell. The cells made on MCZ substrates also showed stable cell performance rather than the usually reported unstable performance for boron-doped CZ substrates. Also reported is a PERL (passivated emitter, rear locally-diffused) cell on a FZ substrate of 24·7% efficiency, which is the highest efficiency ever reported for any silicon solar cell. Copyright © 1999 John Wiley & Sons, Ltd.

657 citations


Authors

Showing all 51897 results

NameH-indexPapersCitations
Ronald C. Kessler2741332328983
Nicholas G. Martin1921770161952
John C. Morris1831441168413
Richard S. Ellis169882136011
Ian J. Deary1661795114161
Nicholas J. Talley158157190197
Wolfgang Wagner1562342123391
Bruce D. Walker15577986020
Xiang Zhang1541733117576
Ian Smail15189583777
Rui Zhang1512625107917
Marvin Johnson1491827119520
John R. Hodges14981282709
Amartya Sen149689141907
J. Fraser Stoddart147123996083
Network Information
Related Institutions (5)
University of Melbourne
174.8K papers, 6.3M citations

97% related

University of Manchester
168K papers, 6.4M citations

94% related

McGill University
162.5K papers, 6.9M citations

93% related

University College London
210.6K papers, 9.8M citations

93% related

University of British Columbia
209.6K papers, 9.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023389
20221,183
202111,342
202011,235
20199,891
20189,145