scispace - formally typeset
Search or ask a question
Institution

University of New South Wales

EducationSydney, New South Wales, Australia
About: University of New South Wales is a education organization based out in Sydney, New South Wales, Australia. It is known for research contribution in the topics: Population & Poison control. The organization has 51197 authors who have published 153634 publications receiving 4880608 citations. The organization is also known as: UNSW & UNSW Australia.


Papers
More filters
Journal ArticleDOI
29 Nov 2007-Nature
TL;DR: It is shown that the Gb3 (glycolipid)-binding B-subunit of bacterial Shiga toxin induces narrow tubular membrane invaginations in human and mouse cells and model membranes, and it is concluded that the B- subunit induces lipid reorganization that favours negative membrane curvature, which drives the formation of inward membrane tubules.
Abstract: Clathrin seems to be dispensable for some endocytic processes and, in several instances, no cytosolic coat protein complexes could be detected at sites of membrane invagination. Hence, new principles must in these cases be invoked to account for the mechanical force driving membrane shape changes. Here we show that the Gb3 (glycolipid)-binding B-subunit of bacterial Shiga toxin induces narrow tubular membrane invaginations in human and mouse cells and model membranes. In cells, tubule occurrence increases on energy depletion and inhibition of dynamin or actin functions. Our data thus demonstrate that active cellular processes are needed for tubule scission rather than tubule formation. We conclude that the B-subunit induces lipid reorganization that favours negative membrane curvature, which drives the formation of inward membrane tubules. Our findings support a model in which the lateral growth of B-subunit–Gb3 microdomains is limited by the invagination process, which itself is regulated by membrane tension. The physical principles underlying this basic cargo-induced membrane uptake may also be relevant to other internalization processes, creating a rationale for conceptualizing the perplexing diversity of endocytic routes. An imaging study of an early step of bacterial toxin intake into cells — membrane invagination — reveals a cargo-induced mechanism that may also apply to other pathogens and more generally to other endocytosis events. The B subunit of Shiga toxin (from Shigella dysenteriae) is seen to enter cells via narrow tubular membrane invaginations. The toxin induces membrane reorganization prior to formation of tubular invaginations, which occurs independently of protein complexes (like clathrin) that have been ascribed membrane deforming capacities, and also when cellular energy is depleted. So membrane invagination relies on physical principles and can occur spontaneously, without the need for sophisticated cellular machinery. A study of endocytosis of Shigella toxin shows that it enters cells via narrow tubular membrane invaginations, with similar properties on cell and model membranes. The toxin induces membrane reorganisation before the formation of tubular invaginations.

565 citations

Proceedings ArticleDOI
07 Nov 2002
TL;DR: An overview on developments and a summary of the state-of-the-art of inverter technology in Europe for single-phase grid-connected photovoltaic (PV) systems for power levels up to 5 kW is provided.
Abstract: An overview on developments and a summary of the state-of-the-art of inverter technology in Europe for single-phase grid-connected photovoltaic (PV) systems for power levels up to 5 kW is provided in this paper. The information includes details not only on the topologies commercially available but also on the switching devices employed and the associated switching frequencies, efficiency, price trends and market share. Finally, the paper outlines issues associated with the development of relevant international industry standards affecting PV inverter technology.

564 citations

Journal ArticleDOI
Emanuele Di Angelantonio1, Stephen Kaptoge1, David Wormser1, Peter Willeit1, Adam S. Butterworth1, Narinder Bansal1, Linda M. O’Keeffe1, Pei Gao1, Angela M. Wood1, Stephen Burgess1, Daniel F. Freitag1, Lisa Pennells1, Sanne A.E. Peters2, Carole L. Hart3, Lise Lund Håheim4, Richard F. Gillum5, Børge G. Nordestgaard6, Bruce M. Psaty7, Bu B. Yeap8, Matthew Knuiman8, Paul J. Nietert9, Jussi Kauhanen10, Jukka T. Salonen11, Lewis H. Kuller12, Leon A. Simons13, Yvonne T. van der Schouw2, Elizabeth Barrett-Connor14, Randi Selmer15, Carlos J. Crespo16, Beatriz L. Rodriguez17, W. M. Monique Verschuren, Veikko Salomaa18, Kurt Svärdsudd19, Pim van der Harst20, Cecilia Björkelund21, Lars Wilhelmsen21, Robert B. Wallace22, Hermann Brenner23, Philippe Amouyel24, Elizabeth L M Barr25, Hiroyasu Iso26, Altan Onat27, Maurizio Trevisan28, Ralph B. D'Agostino29, Cyrus Cooper30, Cyrus Cooper31, Maryam Kavousi32, Lennart Welin, Ronan Roussel33, Ronan Roussel34, Frank B. Hu35, Shinichi Sato, Karina W. Davidson36, Barbara V. Howard37, Maarten J.G. Leening32, Annika Rosengren21, Marcus Dörr38, Dorly J. H. Deeg39, Stefan Kiechl, Coen D.A. Stehouwer40, Aulikki Nissinen18, Simona Giampaoli41, Chiara Donfrancesco41, Daan Kromhout42, Jackie F. Price43, Annette Peters, Tom W. Meade44, Edoardo Casiglia45, Debbie A Lawlor46, John Gallacher47, Dorothea Nagel48, Oscar H. Franco32, Gerd Assmann, Gilles R. Dagenais, J. Wouter Jukema49, Johan Sundström19, Mark Woodward50, Eric J. Brunner51, Kay-Tee Khaw1, Nicholas J. Wareham52, Eric A. Whitsel53, Inger Njølstad54, Bo Hedblad55, Sylvia Wassertheil-Smoller56, Gunnar Engström55, Wayne D. Rosamond53, Elizabeth Selvin57, Naveed Sattar3, Simon G. Thompson1, John Danesh1 
University of Cambridge1, Utrecht University2, University of Glasgow3, University of Oslo4, Howard University5, Copenhagen University Hospital6, University of Washington7, University of Western Australia8, Medical University of South Carolina9, University of Eastern Finland10, Analytical Services11, University of Pittsburgh12, University of New South Wales13, University of California, San Diego14, Norwegian Institute of Public Health15, Portland State University16, University of Hawaii17, National Institutes of Health18, Uppsala University19, University Medical Center Groningen20, University of Gothenburg21, University of Iowa22, German Cancer Research Center23, Pasteur Institute24, Baker IDI Heart and Diabetes Institute25, Osaka University26, Istanbul University27, City College of New York28, Boston University29, University of Oxford30, University of Southampton31, Erasmus University Rotterdam32, Paris Diderot University33, French Institute of Health and Medical Research34, Harvard University35, Columbia University Medical Center36, MedStar Health37, Greifswald University Hospital38, VU University Amsterdam39, Maastricht University Medical Centre40, Istituto Superiore di Sanità41, Wageningen University and Research Centre42, University of Edinburgh43, University of London44, University of Padua45, University of Bristol46, Cardiff University47, Ludwig Maximilian University of Munich48, Leiden University Medical Center49, University of Sydney50, University College London51, Medical Research Council52, University of North Carolina at Chapel Hill53, University of Tromsø54, Lund University55, Albert Einstein College of Medicine56, Johns Hopkins University57
07 Jul 2015-JAMA
TL;DR: Because any combination of these conditions was associated with multiplicative mortality risk, life expectancy was substantially lower in people with multimorbidity.
Abstract: IMPORTANCE: The prevalence of cardiometabolic multimorbidity is increasing. OBJECTIVE: To estimate reductions in life expectancy associated with cardiometabolic multimorbidity. DESIGN, SETTING, AND PARTICIPANTS: Age- and sex-adjusted mortality rates and hazard ratios (HRs) were calculated using individual participant data from the Emerging Risk Factors Collaboration (689,300 participants; 91 cohorts; years of baseline surveys: 1960-2007; latest mortality follow-up: April 2013; 128,843 deaths). The HRs from the Emerging Risk Factors Collaboration were compared with those from the UK Biobank (499,808 participants; years of baseline surveys: 2006-2010; latest mortality follow-up: November 2013; 7995 deaths). Cumulative survival was estimated by applying calculated age-specific HRs for mortality to contemporary US age-specific death rates. EXPOSURES: A history of 2 or more of the following: diabetes mellitus, stroke, myocardial infarction (MI). MAIN OUTCOMES AND MEASURES: All-cause mortality and estimated reductions in life expectancy. RESULTS: In participants in the Emerging Risk Factors Collaboration without a history of diabetes, stroke, or MI at baseline (reference group), the all-cause mortality rate adjusted to the age of 60 years was 6.8 per 1000 person-years. Mortality rates per 1000 person-years were 15.6 in participants with a history of diabetes, 16.1 in those with stroke, 16.8 in those with MI, 32.0 in those with both diabetes and MI, 32.5 in those with both diabetes and stroke, 32.8 in those with both stroke and MI, and 59.5 in those with diabetes, stroke, and MI. Compared with the reference group, the HRs for all-cause mortality were 1.9 (95% CI, 1.8-2.0) in participants with a history of diabetes, 2.1 (95% CI, 2.0-2.2) in those with stroke, 2.0 (95% CI, 1.9-2.2) in those with MI, 3.7 (95% CI, 3.3-4.1) in those with both diabetes and MI, 3.8 (95% CI, 3.5-4.2) in those with both diabetes and stroke, 3.5 (95% CI, 3.1-4.0) in those with both stroke and MI, and 6.9 (95% CI, 5.7-8.3) in those with diabetes, stroke, and MI. The HRs from the Emerging Risk Factors Collaboration were similar to those from the more recently recruited UK Biobank. The HRs were little changed after further adjustment for markers of established intermediate pathways (eg, levels of lipids and blood pressure) and lifestyle factors (eg, smoking, diet). At the age of 60 years, a history of any 2 of these conditions was associated with 12 years of reduced life expectancy and a history of all 3 of these conditions was associated with 15 years of reduced life expectancy. CONCLUSIONS AND RELEVANCE: Mortality associated with a history of diabetes, stroke, or MI was similar for each condition. Because any combination of these conditions was associated with multiplicative mortality risk, life expectancy was substantially lower in people with multimorbidity.

564 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present arguments in support of CGE modelling as the preferred technique in analysing the economic impacts of tourism, and discusses its potential to drive future research in this area that is more relevant to real world tourism destinations.

564 citations

Journal ArticleDOI
TL;DR: In this paper, the authors examine aftermarket trading of underwriters and unaffiliated market makers in the three-month period after an IPO and find that the lead underwriter is always the dominant market maker; he takes substantial inventory positions in the after-market trading, and co-managers play a negligible role.
Abstract: This paper examines aftermarket trading of underwriters and unaffiliated market makers in the three-month period after an IPO. We find that the lead underwriter is always the dominant market maker; he takes substantial inventory positions in the aftermarket trading, and co-managers play a negligible role in aftermarket trading. The lead underwriter engages in stabilization activity for less successful IPOs, and uses the overallotment option to reduce his inventory risk. Compensation to the underwriter arises primarily from fees, but aftermarket trading does generate positive profits, which are positively related to the degree of underpricing.

563 citations


Authors

Showing all 51897 results

NameH-indexPapersCitations
Ronald C. Kessler2741332328983
Nicholas G. Martin1921770161952
John C. Morris1831441168413
Richard S. Ellis169882136011
Ian J. Deary1661795114161
Nicholas J. Talley158157190197
Wolfgang Wagner1562342123391
Bruce D. Walker15577986020
Xiang Zhang1541733117576
Ian Smail15189583777
Rui Zhang1512625107917
Marvin Johnson1491827119520
John R. Hodges14981282709
Amartya Sen149689141907
J. Fraser Stoddart147123996083
Network Information
Related Institutions (5)
University of Melbourne
174.8K papers, 6.3M citations

97% related

University of Manchester
168K papers, 6.4M citations

94% related

McGill University
162.5K papers, 6.9M citations

93% related

University College London
210.6K papers, 9.8M citations

93% related

University of British Columbia
209.6K papers, 9.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023389
20221,183
202111,342
202011,235
20199,891
20189,145