scispace - formally typeset
Search or ask a question
Institution

University of New South Wales

EducationSydney, New South Wales, Australia
About: University of New South Wales is a education organization based out in Sydney, New South Wales, Australia. It is known for research contribution in the topics: Population & Poison control. The organization has 51197 authors who have published 153634 publications receiving 4880608 citations. The organization is also known as: UNSW & UNSW Australia.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an integrative empirical study supports the theoretical argument that corporate social performance (CSP) and financial performance can be correlated, based on earlier work on the relationship between CSP and a firm's financial performance.
Abstract: Building on earlier work on the relationship between corporate social performance (CSP) and a firm’s financial performance, this integrative empirical study supports the theoretical argument that t...

854 citations

Journal ArticleDOI
TL;DR: In this article, a combined approach of discrete particle method and computational fluid dynamics (DPM-CFD), in which the motion of individual particles is obtained by solving Newton's second law of motion and gas flow by the Navier-Stokes equation based on the concept of local average, is presented.

853 citations

Journal ArticleDOI
TL;DR: Part 8 : Advanced life support : 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations with treatment Recommendations.
Abstract: Part 8 : Advanced life support : 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations

851 citations

Journal ArticleDOI
TL;DR: In this paper, the authors apply the idea of plug-in bandwidth selection to develop strategies for choosing the smoothing parameter of local linear squares kernel estimators, which is applicable to odd-degree local polynomial fits and can be extended to other settings, such as derivative estimation and multiple nonparametric regression.
Abstract: Local least squares kernel regression provides an appealing solution to the nonparametric regression, or “scatterplot smoothing,” problem, as demonstrated by Fan, for example. The practical implementation of any scatterplot smoother is greatly enhanced by the availability of a reliable rule for automatic selection of the smoothing parameter. In this article we apply the ideas of plug-in bandwidth selection to develop strategies for choosing the smoothing parameter of local linear squares kernel estimators. Our results are applicable to odd-degree local polynomial fits and can be extended to other settings, such as derivative estimation and multiple nonparametric regression. An implementation in the important case of local linear fits with univariate predictors is shown to perform well in practice. A by-product of our work is the development of a class of nonparametric variance estimators, based on local least squares ideas, and plug-in rules for their implementation.

850 citations

Journal ArticleDOI
TL;DR: This article examines security, a pivotal issue in the 5G network where wireless transmissions are inherently vulnerable to security breaches, and focuses on physical layer security, which safeguards data confidentiality by exploiting the intrinsic randomness of the communications medium.
Abstract: The fifth generation (5G) network will serve as a key enabler in meeting the continuously increasing demands for future wireless applications, including an ultra-high data rate, an ultrawide radio coverage, an ultra-large number of devices, and an ultra-low latency. This article examines security, a pivotal issue in the 5G network where wireless transmissions are inherently vulnerable to security breaches. Specifically, we focus on physical layer security, which safeguards data confidentiality by exploiting the intrinsic randomness of the communications medium and reaping the benefits offered by the disruptive technologies to 5G. Among various technologies, the three most promising ones are discussed: heterogenous networks, massive multiple-input multiple-output, and millimeter wave. On the basis of the key principles of each technology, we identify the rich opportunities and the outstanding challenges that security designers must tackle. Such an identification is expected to decisively advance the understanding of future physical layer security.

848 citations


Authors

Showing all 51897 results

NameH-indexPapersCitations
Ronald C. Kessler2741332328983
Nicholas G. Martin1921770161952
John C. Morris1831441168413
Richard S. Ellis169882136011
Ian J. Deary1661795114161
Nicholas J. Talley158157190197
Wolfgang Wagner1562342123391
Bruce D. Walker15577986020
Xiang Zhang1541733117576
Ian Smail15189583777
Rui Zhang1512625107917
Marvin Johnson1491827119520
John R. Hodges14981282709
Amartya Sen149689141907
J. Fraser Stoddart147123996083
Network Information
Related Institutions (5)
University of Melbourne
174.8K papers, 6.3M citations

97% related

University of Manchester
168K papers, 6.4M citations

94% related

McGill University
162.5K papers, 6.9M citations

93% related

University College London
210.6K papers, 9.8M citations

93% related

University of British Columbia
209.6K papers, 9.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023389
20221,183
202111,342
202011,235
20199,891
20189,145