scispace - formally typeset
Search or ask a question
Institution

University of North Texas

EducationDenton, Texas, United States
About: University of North Texas is a education organization based out in Denton, Texas, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 11866 authors who have published 26984 publications receiving 705376 citations. The organization is also known as: Fight, North Texas & UNT.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors provide an update on ROS and redox signalling in the context of abiotic stress responses, while addressing their role in retrograde regulation, systemic acquired acclimation and cellular coordination in plants.
Abstract: The redox state of the chloroplast and mitochondria, the two main powerhouses of photosynthesizing eukaryotes, is maintained by a delicate balance between energy production and consumption, and affected by the need to avoid increased production of reactive oxygen species (ROS). These demands are especially critical during exposure to extreme environmental conditions, such as high light (HL) intensity, heat, drought or a combination of different environmental stresses. Under these conditions, ROS and redox cues, generated in the chloroplast and mitochondria, are essential for maintaining normal energy and metabolic fluxes, optimizing different cell functions, activating acclimation responses through retrograde signalling, and controlling whole-plant systemic signalling pathways. Regulation of the multiple redox and ROS signals in plants requires a high degree of coordination and balance between signalling and metabolic pathways in different cellular compartments. In this review, we provide an update on ROS and redox signalling in the context of abiotic stress responses, while addressing their role in retrograde regulation, systemic acquired acclimation and cellular coordination in plants.

1,343 citations

Proceedings Article
16 Jul 2006
TL;DR: This paper shows that the semantic similarity method out-performs methods based on simple lexical matching, resulting in up to 13% error rate reduction with respect to the traditional vector-based similarity metric.
Abstract: This paper presents a method for measuring the semantic similarity of texts, using corpus-based and knowledge-based measures of similarity. Previous work on this problem has focused mainly on either large documents (e.g. text classification, information retrieval) or individual words (e.g. synonymy tests). Given that a large fraction of the information available today, on the Web and elsewhere, consists of short text snippets (e.g. abstracts of scientific documents, imagine captions, product descriptions), in this paper we focus on measuring the semantic similarity of short texts. Through experiments performed on a paraphrase data set, we show that the semantic similarity method out-performs methods based on simple lexical matching, resulting in up to 13% error rate reduction with respect to the traditional vector-based similarity metric.

1,308 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a new model to explain how intrafibrillar mineralization of collagen can be achieved during bone formation, which is based on the concept of intra-fibrilar mineralisation, which refers to the fact that growth of the mineral phase is somehow directed by the collagen matrix.
Abstract: Bone is a hierarchically structured composite material which, in addition to its obvious biological value, has been well studied by the materials engineering community because of its unique structure and mechanical properties. This article will review the existing bone literature, with emphasis on the prevailing theories regarding bone formation and structure, which lay the groundwork for proposing a new model to explain how intrafibrillar mineralization of collagen can be achieved during bone formation. Intrafibrillar refers to the fact that growth of the mineral phase is somehow directed by the collagen matrix, which leads to a nanostructured architecture consisting of uniaxially oriented nanocrystals of hydroxyapatite embedded within and roughly [0 0 1] aligned parallel to the long collagen fibril axes. Secondary (osteonal) bone, the focus of this review, is a laminated organic–inorganic composite composed primarily of collagen, hydroxyapatite, and water; but minor constituents, such as non-collagenous proteins (NCPs), are also present and are thought to play an important role in bone formation. To date, there has been no clear understanding of the role of these NCPs, although it has been generally assumed that the NCPs regulate solution crystal growth via some type of ‘epitaxial’ relationship between specific crystallographic faces and specific protein conformers. Indeed, ‘epitaxial’ relationships have been calculated; but in practice, it has not been demonstrated that intrafibrillar mineralization can be accomplished via this route. Because of the difficulty in examining biomineralization processes in vivo , the authors of this article have turned to using in vitro model systems to investigate the possible physicochemical mechanisms that may be involved in biomineralization. In the case of bone biomineral, we have now been able to duplicate the most fundamental level of bone structure, the interpenetrating nanostructured architecture, using relatively simple anionic polypeptides that mimic the polyanionic character of the NCPs. We propose that the charged polymer acts as a process-directing agent, by which the conventional solution crystallization is converted into a precursor process. This polymer-induced liquid-precursor (PILP) process generates an amorphous liquid-phase mineral precursor to hydroxyapatite which facilitates intrafibrillar mineralization of type-I collagen because the fluidic character of the amorphous precursor phase enables it to be drawn into the nanoscopic gaps and grooves of collagen fibrils by capillary action. The precursor then solidifies and crystallizes upon loss of hydration waters into the more thermodynamically stable phase, leaving the collagen fibrils embedded with nanoscopic hydroxyapatite (HA) crystals. Electron diffraction patterns of the highly mineralized collagen fibrils are nearly identical to those of natural bone, indicating that the HA crystallites are preferentially aligned with [0 0 1] orientation along the collagen fibril axes. In addition, studies of etched samples of natural bone and our mineralized collagen suggest that the long accepted “deck of cards” model of bone's nanostructured architecture is not entirely accurate. Most importantly, this in vitro model demonstrates that a highly specific, epitaxial-type interaction with NCPs is not needed to stimulate crystal nucleation and regulate crystal orientation, as has long been assumed. Instead, we propose that collagen is the primary template for crystal organization, but with the important caveat that this templating occurs only for crystals formed from an infiltrated amorphous precursor. These results suggest that the 25-year-old debate regarding bone formation via an amorphous precursor phase needs to be revisited. From a biomedical perspective, in addition to providing possible insight into the role of NCPs in bone formation, this in vitro system may pave the way toward the ultimate goal of fabricating a synthetic bone substitute that not only has a composition similar to bone, but has comparable mechanical properties and bioresorptive potential as natural bone. From a materials chemistry perspective, the non-specificity of the PILP process and capillary infiltration mechanism suggests that non-biological materials could also be fabricated into nanostructured composites using this “biomimetic” strategy.

1,299 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used density functional theory (DFT) to demonstrate that the oxygen reduction reaction (ORR) on N-doped graphene is a direct fourelectron pathway, which is consistent with the experimental observations.
Abstract: Graphene and its derivatives are attractive for electrocatalytical application in fuel cells because of their unique structures and electronic properties. The electrocatalytical mechanism of nitrogen doped graphene in acidic environment was studied by using density functional theory (DFT). The simulations demonstrate that the oxygen reduction reaction (ORR) on N-doped graphene is a direct four-electron pathway, which is consistent with the experimental observations. The energy calculated for each ORR step shows that the ORR can spontaneously occur on the N-graphene. The active catalytical sites on single nitrogen doped graphene are identified, which have either high positive spin density or high positive atomic charge density. The nitrogen doping introduces asymmetry spin density and atomic charge density, making it possible for N-graphene to show high electroncatalytic activities for the ORR.

1,230 citations

Journal ArticleDOI
John K. Colbourne1, Michael E. Pfrender2, Michael E. Pfrender3, Donald L. Gilbert1, W. Kelley Thomas4, Abraham E. Tucker1, Abraham E. Tucker4, Todd H. Oakley5, Shin-ichi Tokishita6, Andrea Aerts7, Georg J. Arnold8, Malay Kumar Basu9, Malay Kumar Basu10, Darren J Bauer4, Carla E. Cáceres11, Liran Carmel9, Liran Carmel12, Claudio Casola1, Jeong Hyeon Choi1, John C. Detter7, Qunfeng Dong1, Qunfeng Dong13, Serge Dusheyko7, Brian D. Eads1, Thomas Fröhlich8, Kerry Geiler-Samerotte5, Kerry Geiler-Samerotte14, Daniel Gerlach15, Daniel Gerlach16, Phil Hatcher4, Sanjuro Jogdeo4, Sanjuro Jogdeo17, Jeroen Krijgsveld18, Evgenia V. Kriventseva15, Dietmar Kültz19, Christian Laforsch8, Erika Lindquist7, Jacqueline Lopez1, J. Robert Manak20, J. Robert Manak21, Jean Muller22, Jasmyn Pangilinan7, Rupali P Patwardhan1, Rupali P Patwardhan23, Samuel Pitluck7, Ellen J. Pritham24, Andreas Rechtsteiner25, Andreas Rechtsteiner1, Mina Rho1, Igor B. Rogozin9, Onur Sakarya5, Onur Sakarya26, Asaf Salamov7, Sarah Schaack24, Sarah Schaack1, Harris Shapiro7, Yasuhiro Shiga6, Courtney Skalitzky20, Zachary Smith1, Alexander Souvorov9, Way Sung4, Zuojian Tang1, Zuojian Tang27, Dai Tsuchiya1, Hank Tu26, Hank Tu7, Harmjan R. Vos18, Mei Wang7, Yuri I. Wolf9, Hideo Yamagata6, Takuji Yamada, Yuzhen Ye1, Joseph R. Shaw1, Justen Andrews1, Teresa J. Crease28, Haixu Tang1, Susan Lucas7, Hugh M. Robertson11, Peer Bork, Eugene V. Koonin9, Evgeny M. Zdobnov15, Evgeny M. Zdobnov29, Igor V. Grigoriev7, Michael Lynch1, Jeffrey L. Boore30, Jeffrey L. Boore7 
04 Feb 2011-Science
TL;DR: The Daphnia genome reveals a multitude of genes and shows adaptation through gene family expansions, and the coexpansion of gene families interacting within metabolic pathways suggests that the maintenance of duplicated genes is not random.
Abstract: We describe the draft genome of the microcrustacean Daphnia pulex, which is only 200 megabases and contains at least 30,907 genes. The high gene count is a consequence of an elevated rate of gene duplication resulting in tandem gene clusters. More than a third of Daphnia's genes have no detectable homologs in any other available proteome, and the most amplified gene families are specific to the Daphnia lineage. The coexpansion of gene families interacting within metabolic pathways suggests that the maintenance of duplicated genes is not random, and the analysis of gene expression under different environmental conditions reveals that numerous paralogs acquire divergent expression patterns soon after duplication. Daphnia-specific genes, including many additional loci within sequenced regions that are otherwise devoid of annotations, are the most responsive genes to ecological challenges.

1,204 citations


Authors

Showing all 12053 results

NameH-indexPapersCitations
Steven N. Blair165879132929
Scott D. Solomon1371145103041
Richard A. Dixon12660371424
Thomas E. Mallouk12254952593
Hong-Cai Zhou11448966320
Qian Wang108214865557
Boris I. Yakobson10744345174
J. N. Reddy10692666940
David Spiegel10673346276
Charles A. Nelson10355740352
Robert J. Vallerand9830141840
Gerald R. Ferris9333229478
Michael H. Abraham8972637868
Jere H. Mitchell8833724386
Alan Needleman8637339180
Network Information
Related Institutions (5)
Arizona State University
109.6K papers, 4.4M citations

95% related

Pennsylvania State University
196.8K papers, 8.3M citations

94% related

University of Tennessee
87K papers, 2.8M citations

93% related

Michigan State University
137K papers, 5.6M citations

93% related

State University of New York System
78K papers, 2.9M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202390
2022300
20211,795
20201,769
20191,644
20181,484