scispace - formally typeset
Search or ask a question

Showing papers by "University of Notre Dame published in 2007"


Journal ArticleDOI
TL;DR: This paper found that essential human genes are likely to encode hub proteins and are expressed widely in most tissues, while the vast majority of disease genes are non-essential and show no tendency to encoding hub proteins, and their expression pattern indicates that they are localized in the functional periphery of the network.
Abstract: A network of disorders and disease genes linked by known disorder-gene associations offers a platform to explore in a single graph-theoretic framework all known phenotype and disease gene associations, indicating the common genetic origin of many diseases. Genes associated with similar disorders show both higher likelihood of physical interactions between their products and higher expression profiling similarity for their transcripts, supporting the existence of distinct disease-specific functional modules. We find that essential human genes are likely to encode hub proteins and are expressed widely in most tissues. This suggests that disease genes also would play a central role in the human interactome. In contrast, we find that the vast majority of disease genes are nonessential and show no tendency to encode hub proteins, and their expression pattern indicates that they are localized in the functional periphery of the network. A selection-based model explains the observed difference between essential and disease genes and also suggests that diseases caused by somatic mutations should not be peripheral, a prediction we confirm for cancer genes.

2,793 citations


Journal ArticleDOI
TL;DR: A considerable amount of research has examined trust since the 1995 publication of as discussed by the authors, and a number of the critical issues that we addressed and provided clarifications and extensions of the topics of levels of analysis, time, control systems, reciprocity, and measurement.
Abstract: A considerable amount of research has examined trust since our 1995 publication. We revisit some of the critical issues that we addressed and provide clarifications and extensions of the topics of levels of analysis, time, control systems, reciprocity, and measurement. We also recognize recent research in new areas of trust, such as affect, emotion, violation and repair, distrust, international and cross-cultural issues, and context-specific models, and we identify promising avenues for future research.

2,370 citations


Journal ArticleDOI
27 Jul 2007-Science
TL;DR: This study studies this network of relatedness between products, or “product space,” finding that more-sophisticated products are located in a densely connected core whereas less-sophile products occupy a less-connected periphery.
Abstract: Economies grow by upgrading the products they produce and export. The technology, capital, institutions, and skills needed to make newer products are more easily adapted from some products than from others. Here, we study this network of relatedness between products, or “product space,” finding that more-sophisticated products are located in a densely connected core whereas less-sophisticated products occupy a less-connected periphery. Empirically, countries move through the product space by developing goods close to those they currently produce. Most countries can reach the core only by traversing empirically infrequent distances, which may help explain why poor countries have trouble developing more competitive exports and fail to converge to the income levels of rich countries.

2,152 citations


Journal ArticleDOI
TL;DR: In this article, three major ways to utilize nanostructures for the design of solar energy conversion devices are discussed: (i) mimicking photosynthesis with donor−acceptor molecular assemblies or clusters, (ii) semiconductor assisted photocatalysis to produce fuels such as hydrogen, and (iii) nanostructure semiconductor based solar cells.
Abstract: The increasing energy demand in the near future will force us to seek environmentally clean alternative energy resources. The emergence of nanomaterials as the new building blocks to construct light energy harvesting assemblies has opened up new ways to utilize renewable energy sources. This article discusses three major ways to utilize nanostructures for the design of solar energy conversion devices: (i) Mimicking photosynthesis with donor−acceptor molecular assemblies or clusters, (ii) semiconductor assisted photocatalysis to produce fuels such as hydrogen, and (iii) nanostructure semiconductor based solar cells. This account further highlights some of the recent developments in these areas and points out the factors that limit the efficiency optimization. Strategies to employ ordered assemblies of semiconductor and metal nanoparticles, inorganic-organic hybrid assemblies, and carbon nanostructures in the energy conversion schemes are also discussed. Directing the future research efforts toward utiliza...

2,119 citations


Journal ArticleDOI
TL;DR: It is demonstrated that cross-sectional approaches to mediation typically generate substantially biased estimates of longitudinal parameters even under the ideal conditions when mediation is complete.
Abstract: Most empirical tests of mediation utilize cross-sectional data despite the fact that mediation consists of causal processes that unfold over time. The authors considered the possibility that longitudinal mediation might occur under either of two different models of change: (a) an autoregressive model or (b) a random effects model. For both models, the authors demonstrated that cross-sectional approaches to mediation typically generate substantially biased estimates of longitudinal parameters even under the ideal conditions when mediation is complete. In longitudinal models where variable M completely mediates the effect of X on Y, cross-sectional estimates of the direct effect of X on Y, the indirect effect of X on Y through M, and the proportion of the total effect mediated by M are often highly misleading.

2,084 citations


Journal ArticleDOI
05 Apr 2007-Nature
TL;DR: The focus is on networks capturing the collaboration between scientists and the calls between mobile phone users, and it is found that large groups persist for longer if they are capable of dynamically altering their membership, suggesting that an ability to change the group composition results in better adaptability.
Abstract: The rich set of interactions between individuals in society results in complex community structure, capturing highly connected circles of friends, families or professional cliques in a social network. Thanks to frequent changes in the activity and communication patterns of individuals, the associated social and communication network is subject to constant evolution. Our knowledge of the mechanisms governing the underlying community dynamics is limited, but is essential for a deeper understanding of the development and self-optimization of society as a whole. We have developed an algorithm based on clique percolation that allows us to investigate the time dependence of overlapping communities on a large scale, and thus uncover basic relationships characterizing community evolution. Our focus is on networks capturing the collaboration between scientists and the calls between mobile phone users. We find that large groups persist for longer if they are capable of dynamically altering their membership, suggesting that an ability to change the group composition results in better adaptability. The behaviour of small groups displays the opposite tendency-the condition for stability is that their composition remains unchanged. We also show that knowledge of the time commitment of members to a given community can be used for estimating the community's lifetime. These findings offer insight into the fundamental differences between the dynamics of small groups and large institutions.

1,676 citations


Journal ArticleDOI
TL;DR: A bipartite graph composed of US Food and Drug Administration–approved drugs and proteins linked by drug–target binary associations is built, showing an overabundance of 'follow-on' drugs, that is, drugs that target already targeted proteins.
Abstract: The global set of relationships between protein targets of all drugs and all disease-gene products in the human protein-protein interaction or 'interactome' network remains uncharacterized. We built a bipartite graph composed of US Food and Drug Administration-approved drugs and proteins linked by drug-target binary associations. The resulting network connects most drugs into a highly interlinked giant component, with strong local clustering of drugs of similar types according to Anatomical Therapeutic Chemical classification. Topological analyses of this network quantitatively showed an overabundance of 'follow-on' drugs, that is, drugs that target already targeted proteins. By including drugs currently under investigation, we identified a trend toward more functionally diverse targets improving polypharmacology. To analyze the relationships between drug targets and disease-gene products, we measured the shortest distance between both sets of proteins in current models of the human interactome network. Significant differences in distance were found between etiological and palliative drugs. A recent trend toward more rational drug design was observed.

1,592 citations


Journal ArticleDOI
Vishvanath Nene1, Jennifer R. Wortman1, Daniel Lawson, Brian J. Haas1, Chinnappa D. Kodira2, Zhijian Jake Tu3, Brendan J. Loftus, Zhiyong Xi4, Karyn Megy, Manfred Grabherr2, Quinghu Ren1, Evgeny M. Zdobnov, Neil F. Lobo5, Kathryn S. Campbell6, Susan E. Brown7, Maria de Fatima Bonaldo8, Jingsong Zhu9, Steven P. Sinkins10, David G. Hogenkamp11, Paolo Amedeo1, Peter Arensburger9, Peter W. Atkinson9, Shelby L. Bidwell1, Jim Biedler3, Ewan Birney, Robert V. Bruggner5, Javier Costas, Monique R. Coy3, Jonathan Crabtree1, Matt Crawford2, Becky deBruyn5, David DeCaprio2, Karin Eiglmeier12, Eric Eisenstadt1, Hamza El-Dorry13, William M. Gelbart6, Suely Lopes Gomes13, Martin Hammond, Linda Hannick1, James R. Hogan5, Michael H. Holmes1, David M. Jaffe2, J. Spencer Johnston, Ryan C. Kennedy5, Hean Koo1, Saul A. Kravitz, Evgenia V. Kriventseva14, David Kulp15, Kurt LaButti2, Eduardo Lee1, Song Li3, Diane D. Lovin5, Chunhong Mao3, Evan Mauceli2, Carlos Frederico Martins Menck13, Jason R. Miller1, Philip Montgomery2, Akio Mori5, Ana L. T. O. Nascimento16, Horacio Naveira17, Chad Nusbaum2, Sinéad B. O'Leary2, Joshua Orvis1, Mihaela Pertea, Hadi Quesneville, Kyanne R. Reidenbach11, Yu-Hui Rogers, Charles Roth12, Jennifer R. Schneider5, Michael C. Schatz, Martin Shumway1, Mario Stanke, Eric O. Stinson5, Jose M. C. Tubio, Janice P. Vanzee11, Sergio Verjovski-Almeida13, Doreen Werner18, Owen White1, Stefan Wyder14, Qiandong Zeng2, Qi Zhao1, Yongmei Zhao1, Catherine A. Hill11, Alexander S. Raikhel9, Marcelo B. Soares8, Dennis L. Knudson7, Norman H. Lee, James E. Galagan2, Steven L. Salzberg, Ian T. Paulsen1, George Dimopoulos4, Frank H. Collins5, Bruce W. Birren2, Claire M. Fraser-Liggett, David W. Severson5 
22 Jun 2007-Science
TL;DR: A draft sequence of the genome of Aedes aegypti, the primary vector for yellow fever and dengue fever, which at approximately 1376 million base pairs is about 5 times the size of the genomes of the malaria vector Anopheles gambiae was presented in this paper.
Abstract: We present a draft sequence of the genome of Aedes aegypti, the primary vector for yellow fever and dengue fever, which at approximately 1376 million base pairs is about 5 times the size of the genome of the malaria vector Anopheles gambiae. Nearly 50% of the Ae. aegypti genome consists of transposable elements. These contribute to a factor of approximately 4 to 6 increase in average gene length and in sizes of intergenic regions relative to An. gambiae and Drosophila melanogaster. Nonetheless, chromosomal synteny is generally maintained among all three insects, although conservation of orthologous gene order is higher (by a factor of approximately 2) between the mosquito species than between either of them and the fruit fly. An increase in genes encoding odorant binding, cytochrome P450, and cuticle domains relative to An. gambiae suggests that members of these protein families underpin some of the biological differences between the two mosquito species.

1,107 citations


Journal ArticleDOI
TL;DR: In this paper, a set of constraints on the dark energy equation-of-state parameter w = P/(rho c(2)) were derived using 60 SNe Ia from the ESSENCE supernova survey.
Abstract: We present constraints on the dark energy equation-of-state parameter, w = P/(rho c(2)), using 60 SNe Ia fromthe ESSENCE supernova survey. We derive a set of constraints on the nature of the dark energy assuming a flat universe. By including constraints on (Omega(M), w) from baryon acoustic oscillations, we obtain a value for a static equation-of-state parameter w = -1:05(-0.12)(+0: 13) (stat 1 sigma) +/- 0: 13 (sys) and Omega(M) = 0:274(-0.020)(+0:033) (stat 1 sigma) with a bestfit chi(2)/dof of 0.96. These results are consistent with those reported by the Supernova Legacy Survey from the first year of a similar program measuring supernova distances and redshifts. We evaluate sources of systematic error that afflict supernova observations and present Monte Carlo simulations that explore these effects. Currently, the largest systematic with the potential to affect our measurements is the treatment of extinction due to dust in the supernova host galaxies. Combining our set of ESSENCE SNe Ia with the first-results Supernova Legacy Survey SNe Ia, we obtain a joint constraint of w = -1:07(-0: 09)(+0:09) (stat 1 sigma) +/- 0: 13 ( sys), Omega(M) 0:267(-0:028)(+0:028) (stat 1 sigma) with a best-fit chi(2)/dof of 0.91. The current global SN Ia data alone rule out empty (Omega(M) = 0), matter-only Omega(M) = 0: 3, and Omega(M) = 1 universes at > 4.5 sigma. The current SN Ia data are fully consistent with a cosmological constant.

989 citations


Journal ArticleDOI
TL;DR: Enhanced image resolution and lower noise have been achieved, concurrently with the reduction of helical cone-beam artifacts, as demonstrated by phantom studies and clinical results illustrate the capabilities of the algorithm on real patient data.
Abstract: Multislice helical computed tomography scanning offers the advantages of faster acquisition and wide organ coverage for routine clinical diagnostic purposes. However, image reconstruction is faced with the challenges of three-dimensional cone-beam geometry, data completeness issues, and low dosage. Of all available reconstruction methods, statistical iterative reconstruction (IR) techniques appear particularly promising since they provide the flexibility of accurate physical noise modeling and geometric system description. In this paper, we present the application of Bayesian iterative algorithms to real 3D multislice helical data to demonstrate significant image quality improvement over conventional techniques. We also introduce a novel prior distribution designed to provide flexibility in its parameters to fine-tune image quality. Specifically, enhanced image resolution and lower noise have been achieved, concurrently with the reduction of helical cone-beam artifacts, as demonstrated by phantom studies. Clinical results also illustrate the capabilities of the algorithm on real patient data. Although computational load remains a significant challenge for practical development, superior image quality combined with advancements in computing technology make IR techniques a legitimate candidate for future clinical applications.

987 citations


Journal ArticleDOI
G. L. Bayatian, S. Chatrchyan, G. Hmayakyan, Albert M. Sirunyan  +2060 moreInstitutions (143)
TL;DR: In this article, the authors present a detailed analysis of the performance of the Large Hadron Collider (CMS) at 14 TeV and compare it with the state-of-the-art analytical tools.
Abstract: CMS is a general purpose experiment, designed to study the physics of pp collisions at 14 TeV at the Large Hadron Collider (LHC). It currently involves more than 2000 physicists from more than 150 institutes and 37 countries. The LHC will provide extraordinary opportunities for particle physics based on its unprecedented collision energy and luminosity when it begins operation in 2007. The principal aim of this report is to present the strategy of CMS to explore the rich physics programme offered by the LHC. This volume demonstrates the physics capability of the CMS experiment. The prime goals of CMS are to explore physics at the TeV scale and to study the mechanism of electroweak symmetry breaking--through the discovery of the Higgs particle or otherwise. To carry out this task, CMS must be prepared to search for new particles, such as the Higgs boson or supersymmetric partners of the Standard Model particles, from the start-up of the LHC since new physics at the TeV scale may manifest itself with modest data samples of the order of a few fb−1 or less. The analysis tools that have been developed are applied to study in great detail and with all the methodology of performing an analysis on CMS data specific benchmark processes upon which to gauge the performance of CMS. These processes cover several Higgs boson decay channels, the production and decay of new particles such as Z' and supersymmetric particles, Bs production and processes in heavy ion collisions. The simulation of these benchmark processes includes subtle effects such as possible detector miscalibration and misalignment. Besides these benchmark processes, the physics reach of CMS is studied for a large number of signatures arising in the Standard Model and also in theories beyond the Standard Model for integrated luminosities ranging from 1 fb−1 to 30 fb−1. The Standard Model processes include QCD, B-physics, diffraction, detailed studies of the top quark properties, and electroweak physics topics such as the W and Z0 boson properties. The production and decay of the Higgs particle is studied for many observable decays, and the precision with which the Higgs boson properties can be derived is determined. About ten different supersymmetry benchmark points are analysed using full simulation. The CMS discovery reach is evaluated in the SUSY parameter space covering a large variety of decay signatures. Furthermore, the discovery reach for a plethora of alternative models for new physics is explored, notably extra dimensions, new vector boson high mass states, little Higgs models, technicolour and others. Methods to discriminate between models have been investigated. This report is organized as follows. Chapter 1, the Introduction, describes the context of this document. Chapters 2-6 describe examples of full analyses, with photons, electrons, muons, jets, missing ET, B-mesons and τ's, and for quarkonia in heavy ion collisions. Chapters 7-15 describe the physics reach for Standard Model processes, Higgs discovery and searches for new physics beyond the Standard Model

Journal ArticleDOI
05 Mar 2007
TL;DR: A survey of the emerging field of networked control systems is provided in this article, where the authors present a snapshot assessment of the current state of research in the field, suggest useful future research directions, and provide a broad perspective on recent fundamental results.
Abstract: A current survey of the emerging field of networked control systems is provided. The aim is to introduce the fundamental issues involved in designing successful networked control systems, to provide a snapshot assessment of the current state of research in the field, to suggest useful future research directions, and to provide a broad perspective on recent fundamental results. Reflecting the goals of the Special Issue itself, this paper surveys relevant work from the areas of systems and control, signal processing, detection and estimation, data fusion, and distributed systems. We discuss appropriate network architectures, topics such as coding for robustly stable control in the presence of time-varying channel capacity, channels with fixed versus adaptively variable data width, issues in data rate problems in nonlinear feedback problems, and problems in routing for stability and performance. In surveying current research on networked control systems, we find that recent theoretical advances and target applications are intimately intertwined. The common goal of papers in the Special Issue which follows is to describe key aspects of this relationship. We also aim to provide a bridge between networked control systems and closely related contemporary work dealing with sensor networks and wireless communication protocols

Journal ArticleDOI
TL;DR: If circumventing climate-driven extinction is a conservation priority, then assisted migration must be considered a management option.
Abstract: The Torreya Guardians are trying to save the Florida torreya (Torreya taxifolia Arn.) from extinction (Barlow & Martin 2004). Fewer than 1000 individuals of this coniferous tree remain within its native distribution, a 35-km stretch of the Apalachicola River, and these trees are not reproducing (Schwartz et al. 2000). Even if the Florida torreya was not declining toward extinction, the species would be at risk from climate change. Warming is projected to either significantly reduce or eliminate suitable habitat for most narrowly endemic taxa (Thomas et al. 2004; Hannah et al. 2005; Peterson et al. 2006), forcing species to colonize new terrain to survive. The focus of the Torreya Guardians is an “assisted migration” program that would introduce seedlings to forests across the Southern Appalachians and Cumberland Plateau (http://www.TorreyaGuardians.org). Their intent is to avert extinction by deliberately expanding the range of this endangered plant over 500 km northward. Because planting endangered plants in new environments is relatively simple as long as seeds are legally acquired and planted with landowner permission, the Torreya Guardians believe their efforts are justified. Introducing this species to regions where it has not existed for 65 million years is “[e]asy, legal, and cheap” (Barlow & Martin 2004). If circumventing climate-driven extinction is a conservation priority, then assisted migration must be considered a management option. Compelling evidence suggests that climate change will be a significant driver of extinction (McCarthy et al. 2001; McLaughlin et al. 2002; Root et al. 2003; Thomas et al. 2004). Researchers typically conclude that mitigating climate change and providing reserve networks that foster connectivity and movement should be a priority (e.g., Hannah et al. 2002). Ecol-

Journal ArticleDOI
TL;DR: Femtosecond transient absorption studies indicate that the rate constant for electron transfer from the thermalized s-state of CdSe quantum dots increases with decreasing particle size, which can be easily modulated by controlling the particle size.
Abstract: Electron injection from excited CdSe quantum dots into TiO2 nanoparticles can be easily modulated by controlling the particle size. Femtosecond transient absorption studies indicate that the rate constant for electron transfer from the thermalized s-state of CdSe quantum dots increases with decreasing particle size. The energy difference between the conduction bands of the two semiconductor systems acts as a driving force for the electron transfer in the normal Marcus region. An increase in the interparticle electron transfer rate constant by 3 orders of magnitude (from ∼107 to 1010 s-1) has been achieved by decreasing the CdSe particle diameter from 7.5 to 2.4 nm.

Journal ArticleDOI
TL;DR: A high-performance low-complexity coherent demodulator at the destination in the form of a weighted combiner is derived from a practically attractive decode-and-forward relay strategy to achieve spatial diversity gains, regardless of the underlying constellation.
Abstract: Cooperative communication systems using various relay strategies can achieve spatial diversity gains, enhance coverage, and potentially increase capacity. For the practically attractive decode-and-forward (DF) relay strategy, we derive a high-performance low-complexity coherent demodulator at the destination in the form of a weighted combiner. The weights are selected adaptively to account for the quality of both source-relay-destination and source-destination links. Analysis proves that the novel coherent demodulator can achieve the maximum possible diversity, regardless of the underlying constellation. Its error performance tightly bounds that of maximum-likelihood (ML) demodulation, which provably quantifies the diversity gain of ML detection with DF relaying. Simulations corroborate the analysis and compare the performance of the novel decoder with existing diversity-achieving strategies including analog amplify-and-forward and selective-relaying.

Journal ArticleDOI
TL;DR: Results show that ionic liquids containing increased fluoroalkyl chains on either the cation or anion do improve CO2 solubility when compared to less fluorinated ionic liquid previously studied, and it was found that it was possible to obtain similar, high levels of CO2solubility in nonfluorous ionic fluids.
Abstract: Previously we showed that CO2 could be used to extract organic molecules from ionic liquids without contamination of the ionic liquid. Consequently a number of other groups demonstrated that ionic liquid/CO2 biphasic systems could be used for homogeneously catalyzed reactions. Large differences in the solubility of various gases in ionic liquids present the possibility of using them for gas separations. More recently we and others have shown that the presence of CO2 increases the solubility of other gases that are poorly soluble in the ionic liquid phase. Therefore, a knowledge and understanding of the phase behavior of these ionic liquid/CO2 systems is important. With the aim of finding ionic liquids that improve CO2 solubility and gaining more information to help us understand how to design CO2-philic ionic liquids, we present the low- and high-pressure measurements of CO2 solubility in a range of ionic liquids possessing structures likely to increase the solubility of CO2. We examined the CO2 solubilit...

Journal ArticleDOI
TL;DR: The first cosmological results from the ESSENCE supernova survey (Wood-Vasey and coworkers) are extended to a wider range of cosmology models including dynamical dark energy and nonstandard cosmologies as mentioned in this paper.
Abstract: The first cosmological results from the ESSENCE supernova survey (Wood-Vasey and coworkers) are extended to a wider range of cosmological models including dynamical dark energy and nonstandard cosmological models. We fold in a greater number of external data sets such as the recent Higher-z release of high-redshift supernovae (Riess and coworkers), as well as several complementary cosmological probes. Model comparison statistics such as the Bayesian and Akaike information criteria are applied to gauge the worth of models. These statistics favor models that give a good fit with fewer parameters. Based on this analysis, the preferred cosmological model is the flat cosmological constant model, where the expansion history of the universe can be adequately described with only one free parameter describing the energy content of the universe. Among the more exotic models that provide good fits to the data, we note a preference for models whose best-fit parameters reduce them to the cosmological constant model.

Journal ArticleDOI
TL;DR: In this paper, fundamental results for carrier statistics in two-dimensional sheets and nanoscale ribbons are derived and the quantum capacitance, an important parameter in the electrostatic design of devices, is derived.
Abstract: In this work, fundamental results for carrier statistics in graphene two-dimensional sheets and nanoscale ribbons are derived. Though the behavior of intrinsic carrier densities in two-dimennsional graphene sheets is found to differ drastically from traditional semiconductors, very narrow (sub-10nm) ribbons are found to be similar to traditional narrow-gap semiconductors. The quantum capacitance, an important parameter in the electrostatic design of devices, is derived for both two-dimensional graphene sheets and nanoribbons.

Journal ArticleDOI
TL;DR: The interplay between the TiO2 and SWCNT of attaining charge equilibration is an important factor for improving photoelectrochemical performance of nanostructured semiconductor based solar cells.
Abstract: Single wall carbon nanotube (SWCNT) architecture when employed as conducting scaffolds in a TiO2 semiconductor based photoelectrochemical cell can boost the photoconversion efficiency by a factor of 2. Titanium dioxide nanoparticles were dispersed on SWCNT films to improve photoinduced charge separation and transport of carriers to the collecting electrode surface. The shift of ∼100 mV in apparent Fermi level of the SWCNT−TiO2 system as compared to the unsupported TiO2 system indicates the Fermi level equilibration between the two systems. The interplay between the TiO2 and SWCNT of attaining charge equilibration is an important factor for improving photoelectrochemical performance of nanostructured semiconductor based solar cells. The feasibility of employing a SWCNT−TiO2 composite to drive the water photoelectrolysis reaction has also been explored.

Journal ArticleDOI
TL;DR: Measurements of the solubilities of CO2, CH4, C2H 6, C 2H 4, O2, and N2 in 1-hexyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide are described and focus is placed on efforts to tailor ionic liquids to enhance the solUBilities of some gases, with particular emphasis on carbon dioxide.
Abstract: The solubilities of gases in ionic liquids are important in evaluating ionic liquids as solvents for reactions involving permanent gases, as gas storage media, and as solvents for gas separations Gas solubilities are also important in developing methods to separate solutes from ionic liquid solutions Here we describe our measurements of the solubilities of CO2, CH4, C2H6, C2H4, O2, and N2 in 1-hexyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide and compare these results to our previous investigations In addition, focus is placed on efforts to tailor ionic liquids to enhance the solubilities of some gases, with particular emphasis on carbon dioxide

Journal ArticleDOI
TL;DR: The purpose of this perspective is to provide a logical basis for a new approach to classifying human disease that uses conventional reductionism and incorporates the non‐reductionist approach of systems biomedicine.
Abstract: Contemporary classification of human disease derives from observational correlation between pathological analysis and clinical syndromes. Characterizing disease in this way established a nosology that has served clinicians well to the current time, and depends on observational skills and simple laboratory tools to define the syndromic phenotype. Yet, this time-honored diagnostic strategy has significant shortcomings that reflect both a lack of sensitivity in identifying preclinical disease, and a lack of specificity in defining disease unequivocally. In this paper, we focus on the latter limitation, viewing it as a reflection both of the different clinical presentations of many diseases (variable phenotypic expression), and of the excessive reliance on Cartesian reductionism in establishing diagnoses. The purpose of this perspective is to provide a logical basis for a new approach to classifying human disease that uses conventional reductionism and incorporates the non-reductionist approach of systems biomedicine.

Journal ArticleDOI
01 Nov 2007-Blood
TL;DR: These studies identify a previously unknown function for exosomes in promoting intercellular communication during an immune response to intracellular pathogens, and hypothesize that extracellular release of exosome containing PAMPs is an important mechanism of immune surveillance.

Journal ArticleDOI
TL;DR: In this article, the authors developed a theory of reciprocity in exchange, which argued that two structural characteristics of reciprocal exchange distinguish among all three forms of exchange and affect the emergence of social solidarity through three causal mechanisms.
Abstract: Despite the prevalence of generalized exchange in social life, few studies have investigated the classic anthropological prediction that generalized (indirect) exchange produces greater social solidarity than restricted (direct) exchange. Building on recent work comparing negotiated and reciprocal forms of direct exchange, the authors develop a theory of reciprocity in exchange. The theory argues that two structural characteristics of reciprocity distinguish among all three forms of exchange and affect the emergence of social solidarity through three causal mechanisms. Experimental results provide strong support for the causal logic of the theory and for the predicted ordering of subjective dimensions of solidarity across the three forms of exchange, with generalized indirect exchange > reciprocal direct exchange > negotiated direct exchange.

Journal ArticleDOI
TL;DR: A connected network of 3.9 million nodes from mobile phone call records is constructed, which can be regarded as a proxy for the underlying human communication network at the societal level and a positive correlation between the overlap and weight of a link is reported.
Abstract: We construct a connected network of 3.9 million nodes from mobile phone call records, which can be regarded as a proxy for the underlying human communication network at the societal level. We assign two weights on each edge to reflect the strength of social interaction, which are the aggregate call duration and the cumulative number of calls placed between the individuals over a period of 18 weeks. We present a detailed analysis of this weighted network by examining its degree, strength, and weight distributions, as well as its topological assortativity and weighted assortativity, clustering and weighted clustering, together with correlations between these quantities. We give an account of motif intensity and coherence distributions and compare them to a randomized reference system. We also use the concept of link overlap to measure the number of common neighbours any two adjacent nodes have, which serves as a useful local measure for identifying the interconnectedness of communities. We report a positive correlation between the overlap and weight of a link, thus providing

Journal ArticleDOI
TL;DR: By coating the nanostructures with high-kappa dielectrics, scattering from Coulombic impurities can be strongly damped, and the resulting improvement in mobilities of carriers can be as much as an order of magnitude for thin 2D semiconductor membranes, and more for semiconductor nanowires.
Abstract: We propose a technique for achieving large improvements in carrier mobilities in 2- and 1-dimensional semiconductor nanostructures by modifying their dielectric environments. We show that by coating the nanostructures with high-kappa dielectrics, scattering from Coulombic impurities can be strongly damped. Though screening is also weakened, the damping of Coulombic scattering is much larger, and the resulting improvement in mobilities of carriers can be as much as an order of magnitude for thin 2D semiconductor membranes, and more for semiconductor nanowires.

Journal ArticleDOI
30 Jul 2007
TL;DR: The contributions that have led to the most significant improvements in performance versus complexity for practical applications are focused on, particularly on the additive white Gaussian noise channel.
Abstract: Starting from Shannon's celebrated 1948 channel coding theorem, we trace the evolution of channel coding from Hamming codes to capacity-approaching codes. We focus on the contributions that have led to the most significant improvements in performance versus complexity for practical applications, particularly on the additive white Gaussian noise channel. We discuss algebraic block codes, and why they did not prove to be the way to get to the Shannon limit. We trace the antecedents of today's capacity-approaching codes: convolutional codes, concatenated codes, and other probabilistic coding schemes. Finally, we sketch some of the practical applications of these codes.

Journal ArticleDOI
TL;DR: In this article, the authors compare the chemical abundances at the sites of 12 nearby (z < 0.14) Type Ic supernovae (SN Ic) that showed broad lines, but had no observed Gamma-Ray Burst (GRB).
Abstract: We compare the chemical abundances at the sites of 12 nearby (z <0.14) Type Ic supernovae (SN Ic) that showed broad lines, but had no observed Gamma-Ray Burst (GRB), with the chemical abundances in 5 nearby (z < 0.25) galaxies at the sites of GRB where broad-lined SN Ic were seen after the fireball had faded. It has previously been noted that GRB hosts are low in luminosity and low in their metal abundances. If low metallicity is sufficient to force the evolution of massive stars to end their lives as GRB with an accompanying broad-lined SN Ic, then we would expect higher metal abundances for the broad-lined SN Ic that have no detected GRB. This is what we observe, and this trend is independent of the choice of metallicity calibration we adopt, and the mode of SN survey that found the broad-lined SN. A unique feature of this analysis is that we present new spectra of the host galaxies and analyze all the measurements of both samples in the same set of ways, using the galaxy emission-line measurements corrected for extinction and stellar absorption, via independent metallicity diagnostics of Kewley & Dopita (2002), of McGaugh (1991) and of Pettini & Pagel (2004). In our small sample, the boundary between galaxies that have GRB accompanying their broad-lined SN Ic and those that have broad-lined SN Ic without a GRB lies at an oxygen abundance of 12+log(O/H)_KD02 ~ 8.5, which corresponds to 0.2-0.6 Z_sun depending on the adopted metallicity scale and solar abundance value. Even when we limit the comparison to SN Ic that were found in untargeted supernova surveys, the environment of every broad-lined SN Ic that had no GRB is more metal rich than the site of any broad-lined SN Ic where a GRB was detected.

Journal ArticleDOI
14 Aug 2007-ACS Nano
TL;DR: The stepwise electron transfer from photoirradiated TiO(2) nanoparticles --> SWCNT --> redox couple has enabled us to probe the electron equilibration process and determine the apparent Fermi level of the TiO (2)-SWCNT system.
Abstract: The use of single wall carbon nanotubes (SWCNTs) as conduits for transporting electrons in a photoelectrochemical solar cell and electronic devices requires better understanding of their electron-accepting properties. When in contact with photoirradiated TiO2 nanoparticles, SWCNTs accept and store electrons. The Fermi level equilibration with photoirradiated TiO2 particles indicates storage of up to 1 electron per 32 carbon atoms in the SWCNT. The stored electrons are readily discharged on demand upon addition of electron acceptors such as thiazine and oxazine dyes (reduction potential less negative than that of the SWCNT conduction band) to the TiO2–SWCNT suspension. The stepwise electron transfer from photoirradiated TiO2 nanoparticles → SWCNT → redox couple has enabled us to probe the electron equilibration process and determine the apparent Fermi level of the TiO2–SWCNT system. A positive shift in apparent Fermi level (20–30 mV) indicates the ability of SWCNTs to undergo charge equilibration with phot...

Journal ArticleDOI
TL;DR: A complete system for ear biometrics, including automated segmentation of the ear in a profile view image and 3D shape matching for recognition is presented, achieving a rank-one recognition rate of 97.8 percent.
Abstract: Previous works have shown that the ear is a promising candidate for biometric identification. However, in prior work, the preprocessing of ear images has had manual steps and algorithms have not necessarily handled problems caused by hair and earrings. We present a complete system for ear biometrics, including automated segmentation of the ear in a profile view image and 3D shape matching for recognition. We evaluated this system with the largest experimental study to date in ear biometrics, achieving a rank-one recognition rate of 97.8 percent for an identification scenario and an equal error rate of 1.2 percent for a verification scenario on a database of 415 subjects and 1,386 total probes.

Journal ArticleDOI
TL;DR: In this paper, the authors provide an overview of the physics and design of single dielectric barrier discharge (SDBD) plasma actuators for enhanced aerodynamics in a variety of applications.