scispace - formally typeset
Search or ask a question
Institution

University of Notre Dame

EducationNotre Dame, Indiana, United States
About: University of Notre Dame is a education organization based out in Notre Dame, Indiana, United States. It is known for research contribution in the topics: Population & Large Hadron Collider. The organization has 22238 authors who have published 55201 publications receiving 2032925 citations. The organization is also known as: University of Notre Dame du Lac & University of Notre Dame, South Bend.


Papers
More filters
Journal ArticleDOI
TL;DR: Since oxygen delivered by a nasal cannula provides no additional symptomatic benefit for relief of refractory dyspnoea in patients with life-limiting illness compared with room air, less burdensome strategies should be considered after brief assessment of the effect of oxygen therapy on the individual patient.

397 citations

Journal ArticleDOI
TL;DR: A coupled system of wind, wind wave, and coastal circulation models has been implemented for southern Louisiana and Mississippi to simulate riverine flows, tides, wind waves, and hurricane storm surge in the region as discussed by the authors.
Abstract: A coupled system of wind, wind wave, and coastal circulation models has been implemented for southern Louisiana and Mississippi to simulate riverine flows, tides, wind waves, and hurricane storm surge in the region. The system combines the NOAA Hurricane Research Division Wind Analysis System (H*WIND) and the Interactive Objective Kinematic Analysis (IOKA) kinematic wind analyses, the Wave Model (WAM) offshore and Steady-State Irregular Wave (STWAVE) nearshore wind wave models, and the Advanced Circulation (ADCIRC) basin to channel-scale unstructured grid circulation model. The system emphasizes a high-resolution (down to 50 m) representation of the geometry, bathymetry, and topography; nonlinear coupling of all processes including wind wave radiation stress-induced set up; and objective specification of frictional parameters based on land-cover databases and commonly used parameters. Riverine flows and tides are validated for no storm conditions, while winds, wind waves, hydrographs, and high wa...

397 citations

Journal ArticleDOI
TL;DR: The 3D solution structure as determined by NMR of the 2-kDa NAG-NAM(pentapeptide)-NAG-Nam(pentAPEptide) synthetic fragment of the cell wall is reported and a model for the bacterial cell wall has been proposed.
Abstract: The 3D structure of the bacterial peptidoglycan, the major constituent of the cell wall, is one of the most important, yet still unsolved, structural problems in biochemistry. The peptidoglycan comprises alternating N-acetylglucosamine (NAG) and N-acetylmuramic disaccharide (NAM) saccharides, the latter of which has a peptide stem. Adjacent peptide stems are cross-linked by the transpeptidase enzymes of cell wall biosynthesis to provide the cell wall polymer with the structural integrity required by the bacterium. The cell wall and its biosynthetic enzymes are targets of antibiotics. The 3D structure of the cell wall has been elusive because of its complexity and the lack of pure samples. Herein we report the 3D solution structure as determined by NMR of the 2-kDa NAG-NAM(pentapeptide)-NAG-NAM(pentapeptide) synthetic fragment of the cell wall. The glycan backbone of this peptidoglycan forms a right-handed helix with a periodicity of three for the NAG-NAM repeat (per turn of the helix). The first two amino acids of the pentapeptide adopt a limited number of conformations. Based on this structure a model for the bacterial cell wall is proposed.

396 citations

Journal ArticleDOI
TL;DR: In this article, the concept of spontaneous symmetry breaking is applied to the rotating mean field of nuclei, which is based on the tilted-axis cranking model, taking into account that the rotational axis can take any orientation with respect to the deformed density distribution.
Abstract: The concept of spontaneous symmetry breaking is applied to the rotating mean field of nuclei. The description is based on the tilted-axis cranking model, which takes into account that the rotational axis can take any orientation with respect to the deformed density distribution. The appearance of rotational bands in nuclei is analyzed, focusing on weakly deformed nuclei at high angular momentum. The quantization of the angular momentum of the valence nucleons leads to new phenomena. Magnetic rotation represents the quantized rotation of the anisotropic current distribution in a near spherical nucleus. The restricted amount of angular momentum of the valence particles causes band termination. The discrete symmetries of the mean-field Hamiltonian provide a classification scheme of rotational bands. New symmetries result from the combination of the spatial symmetries of the density distribution with the vector of the angular momentum. The author discusses in detail which symmetries appear for a reflection-symmetric density distribution and how they show up in the properties of the rotational bands. In particular, the consequences of rotation about a nonprincipal axis and of breaking the chiral symmetry are analyzed. Also discussed are which symmetries and band structures appear for non-reflection-symmetric mean fields. The consequences of breaking the symmetry with respect to gauge and isospin rotations are sketched. Some analogies outside nuclear physics are mentioned. The application of symmetry-restoring methods to states with large angular momentum is reviewed.

396 citations

Journal ArticleDOI
TL;DR: Graphene−TiO2 nanocomposites synthesized via a solution-based method involving photocatalytic reduction of graphene oxide have been employed as photoanodes as discussed by the authors.
Abstract: Graphene−TiO2 nanocomposites synthesized via a solution-based method involving photocatalytic reduction of graphene oxide have been employed as photoanodes. Nearly 90% enhancement in the photocurrent is seen as reduced graphene oxide serves as electron collector and transporter. Additionally, the graphene−TiO2 nanocomposite electrodes exhibit significant activity for the complete photocatalytic decomposition of 2,4-dichlorophenoxyacetic acid (2,4-D). Combined with safe, solution-based synthetic practices, the promising photocurrent and photocatalytic degradation rates provide the framework and motivation for the implementation of graphene−TiO2 nanocomposites on larger scales.

396 citations


Authors

Showing all 22586 results

NameH-indexPapersCitations
George Davey Smith2242540248373
David Miller2032573204840
Patrick O. Brown183755200985
Dorret I. Boomsma1761507136353
Chad A. Mirkin1641078134254
Darien Wood1602174136596
Wei Li1581855124748
Timothy C. Beers156934102581
Todd Adams1541866143110
Albert-László Barabási152438200119
T. J. Pearson150895126533
Amartya Sen149689141907
Christopher Hill1441562128098
Tim Adye1431898109010
Teruki Kamon1422034115633
Network Information
Related Institutions (5)
University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

90% related

University of Maryland, College Park
155.9K papers, 7.2M citations

89% related

University of Texas at Austin
206.2K papers, 9M citations

89% related

Pennsylvania State University
196.8K papers, 8.3M citations

89% related

Princeton University
146.7K papers, 9.1M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023115
2022543
20212,777
20202,925
20192,774
20182,624