scispace - formally typeset
Search or ask a question
Institution

University of Notre Dame

EducationNotre Dame, Indiana, United States
About: University of Notre Dame is a education organization based out in Notre Dame, Indiana, United States. It is known for research contribution in the topics: Population & Large Hadron Collider. The organization has 22238 authors who have published 55201 publications receiving 2032925 citations. The organization is also known as: University of Notre Dame du Lac & University of Notre Dame, South Bend.


Papers
More filters
Journal ArticleDOI
TL;DR: Dynactin is required for transport activity of microtubule motors of opposite polarity, cytoplasmic dynein and kinesin II, and may provide a new mechanism to coordinate their activities, as revealed in Xenopus laevis melanophores.
Abstract: Kinesin II is a heterotrimeric plus end–directed microtubule motor responsible for the anterograde movement of organelles in various cell types. Despite substantial literature concerning the types of organelles that kinesin II transports, the question of how this motor associates with cargo organelles remains unanswered. To address this question, we have used Xenopus laevis melanophores as a model system. Through analysis of kinesin II–mediated melanosome motility, we have determined that the dynactin complex, known as an anchor for cytoplasmic dynein, also links kinesin II to organelles. Biochemical data demonstrates that the putative cargo-binding subunit of Xenopus kinesin II, Xenopus kinesin II–associated protein (XKAP), binds directly to the p150Glued subunit of dynactin. This interaction occurs through aa 530–793 of XKAP and aa 600–811 of p150Glued. These results reveal that dynactin is required for transport activity of microtubule motors of opposite polarity, cytoplasmic dynein and kinesin II, and may provide a new mechanism to coordinate their activities.

317 citations

Journal ArticleDOI
V. M. Abazov1, Brad Abbott2, M. Abolins3, Bobby Samir Acharya4  +515 moreInstitutions (86)
TL;DR: O observation of the electroweak production of single top quarks in pp[over ] collisions at sqrt[s]=1.96 TeV based on 2.3 fb(-1) of data collected by the D0 detector at the Fermilab Tevatron Collider is reported.
Abstract: We report observation of the electroweak production of single top quarks in pp collisions at s=1.96 TeV based on 2.3 fb(-1) of data collected by the D0 detector at the Fermilab Tevatron Collider. Using events containing an isolated electron or muon and missing transverse energy, together with jets originating from the fragmentation of b quarks, we measure a cross section of sigma(pp -> tb+X,tqb+X)=3.94 +/- 0.88 pb. The probability to measure a cross section at this value or higher in the absence of signal is 2.5x10(-7), corresponding to a 5.0 standard deviation significance for the observation.

316 citations

Journal ArticleDOI
TL;DR: The analysis of excision events for two representatives of this family of short‐inverted‐repeat elements, tagalong and piggysac, provides further validation for their inclusion in a single family of unique transposons.
Abstract: Transposon mutagenesis of baculoviruses provides an ideal experimental system for analysis of the movement of a unique family of mobile element identified from lepidopteran genomes. Members of this family of short-inverted-repeat elements are characterized by their extreme specificity for TTAA target sites. This report describes the analysis of excision events for two representatives of this family, tagalong (formerly TFP3) and piggyBac (formerly IFP2). These elements were tagged with a polyhedrin/lacZ reporter gene and inserted back into the virus genome either by homologous recombination or by transposition. Revertants were selected based on a white plaque phenotype. Both elements excise in a precise fashion from their positions in the baculovirus genome in either TN-368 cells or IPLB-SF21 AE cells. The precise excision of these elements in infected IPLB-SF21 AE cells occurs in the absence of either tagalong or piggyBac element encoded functions. The common characteristics of both insertion and excision for these elements provides further validation for their inclusion in a single family of unique transposons.

316 citations

Journal ArticleDOI
TL;DR: In this paper, the authors detect a Neptune mass ratio (q 8? 10-5) planetary companion to the lens star in the extremely high magnification (A ~ 800) microlensing event OGLE-2005-BLG-169.
Abstract: We detect a Neptune mass ratio (q 8 ? 10-5) planetary companion to the lens star in the extremely high magnification (A ~ 800) microlensing event OGLE-2005-BLG-169. If the parent is a main-sequence star, it has mass M ~ 0.5 M?, implying a planet mass of ~13 M? and projected separation of ~2.7 AU. When intensely monitored over their peak, high-magnification events similar to OGLE-2005-BLG-169 have nearly complete sensitivity to Neptune mass ratio planets with projected separations of 0.6-1.6 Einstein radii, corresponding to 1.6-4.3 AU in the present case. Only two other such events were monitored well enough to detect Neptunes, and so this detection by itself suggests that Neptune mass ratio planets are common. Moreover, another Neptune was recently discovered at a similar distance from its parent star in a low-magnification event, which are more common but are individually much less sensitive to planets. Combining the two detections yields 90% upper and lower frequency limits f = 0.38 over just 0.4 decades of planet-star separation. In particular, f > 16% at 90% confidence. The parent star hosts no Jupiter-mass companions with projected separations within a factor 5 of that of the detected planet. The lens-source relative proper motion is ? ~ 7-10 mas yr-1, implying that if the lens is sufficiently bright, I 23.8, it will be detectable by the Hubble Space Telescope by 3 years after peak. This would permit a more precise estimate of the lens mass and distance and, so, the mass and projected separation of the planet. Analogs of OGLE-2005-BLG-169Lb orbiting nearby stars would be difficult to detect by other methods of planet detection, including radial velocities, transits, and astrometry.

316 citations

Journal ArticleDOI
TL;DR: An international effort to guide arthropod genomic efforts, from species prioritization to methodology and informatics is described, which aims to deliver sequences and analytical tools for each of theArthropod branches andEach of the species having beneficial and negative effects on humankind.
Abstract: Insects and their arthropod relatives including mites, spiders, and crustaceans play major roles in the world's terrestrial, aquatic, and marine ecosystems Arthropods compete with humans for food and transmit devastating diseases They also comprise the most diverse and successful branch of metazoan evolution, with millions of extant species Here, we describe an international effort to guide arthropod genomic efforts, from species prioritization to methodology and informatics The 5000 arthropod genomes initiative (i5K) community met formally in 2012 to discuss a roadmap for sequencing and analyzing 5000 high-priority arthropods and is continuing this effort via pilot projects, the development of standard operating procedures, and training of students and career scientists, With university, governmental, and industry support, the i5K Consortium aspires to deliver sequences and analytical tools for each of the arthropod branches and each of the species having beneficial and negative effects on humankind

316 citations


Authors

Showing all 22586 results

NameH-indexPapersCitations
George Davey Smith2242540248373
David Miller2032573204840
Patrick O. Brown183755200985
Dorret I. Boomsma1761507136353
Chad A. Mirkin1641078134254
Darien Wood1602174136596
Wei Li1581855124748
Timothy C. Beers156934102581
Todd Adams1541866143110
Albert-László Barabási152438200119
T. J. Pearson150895126533
Amartya Sen149689141907
Christopher Hill1441562128098
Tim Adye1431898109010
Teruki Kamon1422034115633
Network Information
Related Institutions (5)
University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

90% related

University of Maryland, College Park
155.9K papers, 7.2M citations

89% related

University of Texas at Austin
206.2K papers, 9M citations

89% related

Pennsylvania State University
196.8K papers, 8.3M citations

89% related

Princeton University
146.7K papers, 9.1M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023115
2022543
20212,777
20202,925
20192,774
20182,624