scispace - formally typeset
Search or ask a question
Institution

University of Notre Dame

EducationNotre Dame, Indiana, United States
About: University of Notre Dame is a education organization based out in Notre Dame, Indiana, United States. It is known for research contribution in the topics: Population & Large Hadron Collider. The organization has 22238 authors who have published 55201 publications receiving 2032925 citations. The organization is also known as: University of Notre Dame du Lac & University of Notre Dame, South Bend.


Papers
More filters
Proceedings ArticleDOI
25 Jul 2010
TL;DR: This paper examines important factors for link prediction in networks and provides a general, high-performance framework for the prediction task and presents an effective flow-based predicting algorithm, formal bounds on imbalance in sparse network link prediction, and employ an evaluation method appropriate for the observed imbalance.
Abstract: This paper examines important factors for link prediction in networks and provides a general, high-performance framework for the prediction task. Link prediction in sparse networks presents a significant challenge due to the inherent disproportion of links that can form to links that do form. Previous research has typically approached this as an unsupervised problem. While this is not the first work to explore supervised learning, many factors significant in influencing and guiding classification remain unexplored. In this paper, we consider these factors by first motivating the use of a supervised framework through a careful investigation of issues such as network observational period, generality of existing methods, variance reduction, topological causes and degrees of imbalance, and sampling approaches. We also present an effective flow-based predicting algorithm, offer formal bounds on imbalance in sparse network link prediction, and employ an evaluation method appropriate for the observed imbalance. Our careful consideration of the above issues ultimately leads to a completely general framework that outperforms unsupervised link prediction methods by more than 30% AUC.

695 citations

Journal ArticleDOI
TL;DR: A class of algebraically structured quasi-cyclic low-density parity-check (LDPC) codes and their convolutional counterparts is presented and bounds on the girth and minimum distance of the codes are found, and several possible encoding techniques are described.
Abstract: A class of algebraically structured quasi-cyclic (QC) low-density parity-check (LDPC) codes and their convolutional counterparts is presented. The QC codes are described by sparse parity-check matrices comprised of blocks of circulant matrices. The sparse parity-check representation allows for practical graph-based iterative message-passing decoding. Based on the algebraic structure, bounds on the girth and minimum distance of the codes are found, and several possible encoding techniques are described. The performance of the QC LDPC block codes compares favorably with that of randomly constructed LDPC codes for short to moderate block lengths. The performance of the LDPC convolutional codes is superior to that of the QC codes on which they are based; this performance is the limiting performance obtained by increasing the circulant size of the base QC code. Finally, a continuous decoding procedure for the LDPC convolutional codes is described.

695 citations

Journal ArticleDOI
26 Feb 2004-Nature
TL;DR: A flux balance analysis of the metabolism of Escherichia coli strain MG1655 shows that network use is highly uneven, which probably represents a universal feature of metabolic activity in all cells, with potential implications for metabolic engineering.
Abstract: Cellular metabolism, the integrated interconversion of thousands of metabolic substrates through enzyme-catalysed biochemical reactions, is the most investigated complex intracellular web of molecular interactions. Although the topological organization of individual reactions into metabolic networks is well understood, the principles that govern their global functional use under different growth conditions raise many unanswered questions. By implementing a flux balance analysis of the metabolism of Escherichia coli strain MG1655, here we show that network use is highly uneven. Whereas most metabolic reactions have low fluxes, the overall activity of the metabolism is dominated by several reactions with very high fluxes. E. coli responds to changes in growth conditions by reorganizing the rates of selected fluxes predominantly within this high-flux backbone. This behaviour probably represents a universal feature of metabolic activity in all cells, with potential implications for metabolic engineering.

694 citations

Journal ArticleDOI
TL;DR: In this paper, an all-atom force field is developed using a combination of density functional theory calculations and CHARMM 22 parameter values for the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate.
Abstract: We report the results of a molecular dynamics study of the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate [bmim][PF6], a widely studied ionic liquid. An all-atom force field is developed using a combination of density functional theory calculations and CHARMM 22 parameter values. Molecular dynamics simulations are carried out in the isothermal−isobaric ensemble at three different temperatures. Quantities computed include infrared frequencies, molar volumes, volume expansivities, isothermal compressibililties, self-diffusivities, cation−anion exchange rates, rotational dynamics, and radial distribution functions. Computed thermodynamic properties are in good agreement with available experimental values.

691 citations

Journal ArticleDOI
Keith Bradnam1, Joseph Fass1, Anton Alexandrov, Paul Baranay2, Michael Bechner, Inanc Birol, Sébastien Boisvert3, Jarrod Chapman4, Guillaume Chapuis5, Guillaume Chapuis6, Rayan Chikhi6, Rayan Chikhi5, Hamidreza Chitsaz7, Wen-Chi Chou8, Jacques Corbeil3, Cristian Del Fabbro9, T. Roderick Docking, Richard Durbin10, Dent Earl11, Scott J. Emrich12, Pavel Fedotov, Nuno A. Fonseca13, Ganeshkumar Ganapathy14, Richard A. Gibbs15, Sante Gnerre16, Elenie Godzaridis3, Steve Goldstein, Matthias Haimel13, Giles Hall16, David Haussler11, Joseph B. Hiatt17, Isaac Ho4, Jason T. Howard14, Martin Hunt10, Shaun D. Jackman, David B. Jaffe16, Erich D. Jarvis14, Huaiyang Jiang15, Sergey Kazakov, Paul J. Kersey13, Jacob O. Kitzman17, James R. Knight, Sergey Koren18, Tak-Wah Lam, Dominique Lavenier5, Dominique Lavenier6, François Laviolette3, Yingrui Li, Zhenyu Li, Binghang Liu, Yue Liu15, Ruibang Luo, Iain MacCallum16, Matthew D. MacManes19, Nicolas Maillet5, Sergey Melnikov, Bruno Vieira20, Delphine Naquin5, Zemin Ning10, Thomas D. Otto10, Benedict Paten11, Octávio S. Paulo20, Adam M. Phillippy18, Francisco Pina-Martins20, Michael Place, Dariusz Przybylski16, Xiang Qin15, Carson Qu15, Filipe J. Ribeiro16, Stephen Richards15, Daniel S. Rokhsar19, Daniel S. Rokhsar4, J. Graham Ruby21, J. Graham Ruby22, Simone Scalabrin9, Michael C. Schatz23, David C. Schwartz, Alexey Sergushichev, Ted Sharpe16, Timothy I. Shaw8, Jay Shendure17, Yujian Shi, Jared T. Simpson10, Henry Song15, Fedor Tsarev, Francesco Vezzi24, Riccardo Vicedomini9, Jun Wang, Kim C. Worley15, Shuangye Yin16, Siu-Ming Yiu, Jianying Yuan, Guojie Zhang, Hao Zhang, Shiguo Zhou, Ian F Korf1 
TL;DR: The Assemblathon 2 as mentioned in this paper presented a variety of sequence data to be assembled for three vertebrate species (a bird, a fish, and a snake) from 21 participating teams.
Abstract: Background - The process of generating raw genome sequence data continues to become cheaper, faster, and more accurate. However, assembly of such data into high-quality, finished genome sequences remains challenging. Many genome assembly tools are available, but they differ greatly in terms of their performance (speed, scalability, hardware requirements, acceptance of newer read technologies) and in their final output (composition of assembled sequence). More importantly, it remains largely unclear how to best assess the quality of assembled genome sequences. The Assemblathon competitions are intended to assess current state-of-the-art methods in genome assembly. Results - In Assemblathon 2, we provided a variety of sequence data to be assembled for three vertebrate species (a bird, a fish, and snake). This resulted in a total of 43 submitted assemblies from 21 participating teams. We evaluated these assemblies using a combination of optical map data, Fosmid sequences, and several statistical methods. From over 100 different metrics, we chose ten key measures by which to assess the overall quality of the assemblies. Conclusions - Many current genome assemblers produced useful assemblies, containing a significant representation of their genes, regulatory sequences, and overall genome structure. However, the high degree of variability between the entries suggests that there is still much room for improvement in the field of genome assembly and that approaches which work well in assembling the genome of one species may not necessarily work well for another.

690 citations


Authors

Showing all 22586 results

NameH-indexPapersCitations
George Davey Smith2242540248373
David Miller2032573204840
Patrick O. Brown183755200985
Dorret I. Boomsma1761507136353
Chad A. Mirkin1641078134254
Darien Wood1602174136596
Wei Li1581855124748
Timothy C. Beers156934102581
Todd Adams1541866143110
Albert-László Barabási152438200119
T. J. Pearson150895126533
Amartya Sen149689141907
Christopher Hill1441562128098
Tim Adye1431898109010
Teruki Kamon1422034115633
Network Information
Related Institutions (5)
University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

90% related

University of Maryland, College Park
155.9K papers, 7.2M citations

89% related

University of Texas at Austin
206.2K papers, 9M citations

89% related

Pennsylvania State University
196.8K papers, 8.3M citations

89% related

Princeton University
146.7K papers, 9.1M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023115
2022543
20212,777
20202,925
20192,774
20182,624